
The Invention of the Object: Object Orientation and the
Philosophical Development of Programming Languages
Justin Joque

Abstract
Programming languages have developed significantly over the past century to provide
complex models to think about and describe the world and processes of computation. Out of
Alan Kay’s Smalltalk and a number of earlier languages, object-oriented programming has
emerged as a preeminent mode of writing and organizing programs. Tracing the history of
object-oriented programming from its origins in Simula and Sketchpad through Smalltalk,
particularly its philosophical and technical developments, offers unique insights into
philosophical questions about objects, language, and our digital technologies. These early
attempts to understand objects as basic elements of computation demonstrate the ways in
which language, while firmly planted in the material reality of computation, must delimit
objects from each other. This essay critically explores this history and explicates a theory of
objects suggested by the development of object-oriented programming languages, which
insists on the importance of language for representing and delimiting objects. It argues that
the philosophies behind object-oriented programming are ultimately opposed to the claims
of object-oriented ontology and find themselves more closely allied with philosophies that
insist on the mediation of what exists through language.

Keywords
Programming languages
Object-oriented programming
Philosophy of computing
Object-oriented philosophy

This is a preprint version of the manuscript. The final publication will be published in
Philosophy and Technology and available at Springer via http://dx.doi.org/10.1007/s13347-016-
0223-5

1. The Invention of the Object
With the growing threat of ecological catastrophe, our increasing dependence on global
material flows of goods and resources, and the realization that even our virtual worlds
require massive material infrastructure, a number of diverse philosophical and scholarly
discourses are turning (and returning) to considerations of materiality and explicitly the
world of objects. Most notably, various forms of speculative realism (Mellasioux) and

object-oriented ontology (Harman; Levi-Bryant; Morton; Bogost; while not directly
recognized as a proponent of this ontology, Latour should count at the very least as a fellow
traveler or perhaps a predecessor) have insisted on the importance of objects, especially the
relations between objects beyond our limited human view. Many of these philosophies—
especially Harman’s—are based on the notion of solid objects that exist autonomously from
each other. Despite the obvious allusion to object-oriented programming in the naming of
object-oriented ontology, there are few descriptions of the relationship between object-
oriented programming (OOP) and said ontology. This is especially unfortunate as the
history and philosophy that surround object-oriented programming offer a nuanced
understanding of objects, their ability to hide part of themselves from the world, their
relations, and their representation in languages that in many ways challenge the claims
offered by object-oriented ontology. The philosophies that underlie OOP, likely as a result
of the exigencies of creating functional systems, stress the relations between objects and the
difficulties in conceptualizing objects as fully autonomous outside of the languages that
address them.

In order to fully explicate the technical-philosophical ideas that have been developed under
the name of object-oriented programming, it is imperative to trace the ways in which the
concept of an “object” as an element of programming was both envisioned and forced to
change as a result of the practical and theoretical demands of the actual work of
programming. This history suggests that both objects themselves and even the concept of
what an object is are unstable and emergent.1 Developments in object-oriented programming
continue, but perhaps, the most telling points of its philosophical implications are its earliest
conception in Alan Kay’s Smalltalk and the two major influences that preceded it: Simula, a
language designed for simulating complex systems, and Sketchpad, a program for creating
computer-assisted drawings. While histories and explanations exist for all three languages,
the present essay focuses on the technical means by which the notion of an object was
created and the philosophical paths that brought programming to this point.2 As such, the
main sources are largely drawn from the technical and philosophical descriptions laid out by
the designers of these languages.3 Furthermore, it should be noted that these sources present
a rigorous definition of how to understand programming that is likely rarely to be held up in
the messy practice of writing actual programs. The most eloquent notions of how a program
should be written often fall away under the stress of deadlines and the collaborative work of
committees. Moreover, even the definitions of objects and other programming concepts
offered are often ideal and aspirational; in the negotiation of actual implementation, they are
frequently further unsettled as they are implemented in actual systems.4 Still in order to
appreciate the relationship between objects and language, it is fruitful to follow the

development of the lofty ideas that outline this type of programming and the
groundbreaking innovations that have led to it.

The term object-oriented programming describes both a style of writing computer code and
a group of programming languages that are designed to be programmed in such a way. OOP
offers unique insights into the creation of digital objects and the ways in which they are
represented in a constantly developing field of languages. The advent of object-oriented
programming exists within a much longer trend towards increasing abstraction in computer
languages. This trend has moved programming languages further and further away from
directly describing and operating on the individual bits, inputs, outputs, pixels, and switches
that make up the hardware of a given computer to abstract concepts such as functions,
objects, classes, and graphics. The history of programming languages runs from the use of
addresses of small blocks of memory in a system (the actual physical storage of bits on hard
drives and other media) to the use of primitive data types like integers, characters, and floats
(variables with a floating decimal point); to more complex data types such a strings, lists,
and arrays; and finally to complex, programmer-defined data structures that composite a
variety of simpler data types. What is so striking about the work carried out in the 1960s
and 1970s is precisely the way in which this increasing abstraction allowed programmers to
think about “objects” as a useful metaphor for what was happening on the level of hardware
or perhaps more accurately on the level of interaction between programmer and hardware.
We can glimpse in this history a unique moment when a number of limited functional sets of
operations proliferate, abstract, and coalesce to create a rich and diverse set of languages
that begin to speak of objects, classes, and public and private properties.

This trend towards abstraction has not occluded the possibility and necessity of
programming at lower levels. Programmers still write machine code, especially when
computational efficiency is extremely important or one needs to interact with the most basic
aspects of a machine (e.g., parts of the program that loads the operating system and code
written for certain microcontrollers). This history of increasing abstraction is not one of
direct succession but rather the diversification of a complex ecology of programming
languages. Moreover, there have been and continue to be other frameworks for abstracting
digital systems. Thus, the point is not to suggest that the object is somehow an inevitable
and necessary outcome of this process of linguistic abstraction. Rather, this history
demonstrates how the computational object, as one possible outcome for a process of
abstraction, offers a number of critical insights into the relationship between objects,
language, and the real.5

2. Object-Oriented Programming

The notion that a program can be thought of as a set of objects that consist of a series of
properties and functions, which ultimately allow them to interact with other objects,
provides the central metaphor for object-oriented programming. Each of these objects is
defined by a class, which lays out its basic rules, and provides a method for constructing as
many objects as needed. If this all seems rather abstract, it is because its entire purpose is, in
the most general and abstract terms, to describe programming any system. Object-oriented
programming provides an abstracted means to think about the real work that a program
does. Many introductory programming books usually begin with a simple example to clarify
the matter and perhaps one would help here as well.

We can take an example from the manuals for Simula, a system to manage (or simulate) an
airport ticket counter. We could design our system with a class named “airplane” with a
fixed number of seats and a function allowing a passenger to be assigned to a seat. We could
also create a class named “passenger” that could perform various functions and have data
assigned to it. The class itself does not contain the specific data and instead functions as a
template from which to create objects. Our program then would take these classes, and
every time it needed a new passenger or airplane, it would create an instance or object that
would maintain this data as long as needed. This form of programming helps to
conceptualize complex programs and also to divide the writing of such programs among
multiple programmers as each programmer can focus on a certain class or set of classes
once they are defined.

3. Language or Real Language
In order to appreciate the novelty and importance of the concepts developed under the name
object-oriented programming, it is critical to understand how programming languages
function not only as a means of instructing a computer but also a tool for thinking and
communicating, in short as a language. Rather than being merely a means to instruct
computers, they are complex languages whose logics and ambiguities continually reshape
computation. There is a tendency both in general discussions and critical examinations of
software to separate “language” from code. These arguments most often center on the claim
that, because computer languages are compiled by a strict set of rules into machine code,
they are merely a set of instructions for the computer to follow and cannot signify anything
or provide any ambiguity like a real human language. Thacker (2004, pp. 13–14) presents
this position succinctly, saying that “code is not necessarily language, and certainly not a
sign…A code is a series of activated mechanical gears, or a stack of punched cards
circulating through a tape-reading machine, or a flow of light pulses or bits in a transistor or
on silicon.” While Evens (2006, p. 89) ultimately makes an argument for creativity and
desire in the interface between programmer and machine, he simultaneously suggests that

“computer language is wholly literal. Every line of code derives its meaning precisely from
the letters or characters that are used to write it down, and it has no meaning beyond those
letters.” Kittler (1995, p. 147) even insists that “the last historical act of writing may well
have been the moment when, in the early seventies, Intel engineers laid out some dozen
square meters of blueprint paper (64 square meters, in the case of the later 8086) in order to
design the hardware architecture of their first integrated microprocessor.”

Ultimately, this antipathy to seeing programming languages as language and insistence on
the importance of the computational translation of code into binary, which shows up in
stronger and weaker forms in a variety of additional authors including Hayles (1999),
Galloway (2004, 2006), and Golumbia (2009), finds an early expression in Derrida’s
repeated distinction between writing and “the program.” For instance,
in Circumfessions (1993, p. 31), Derrida says against an attempt to codify his theoretical
edifice, “The grammar of his theologic program will not have been able to recognize, name,
foresee, produce, predict, unpredictable things to survive him.” Here, the program is
presented as an attempt to refuse the unpredictable that is endemic to writing. It is this belief
that the program is closed and completely predictable in its translation from computer
language to binary code that underwrites these repeated claims that computer language is
wholly literal, a literality that can never be literature, and hence not language.

While computer languages function and develop differently than spoken or traditional
written languages, they are still creative, metaphoric, and evolving systems of
communication. Even though an effective program must be interpreted and compiled into
binary code following a rigorous set of rules, the entire edifice of contemporary high-level
computer programming languages has been built around making it easier for a programmer
to implement his or her ideas and communicate that implementation with others who look at
the code. Nearly, every contemporary programming language has a method for marking
lines as comments so that a programmer can explain to others (and herself in the future) the
purpose of parts of the program. Names of key parameters are decided in such a way as to
make the flow of the program comprehensible, as the compiler is largely agnostic towards
the selection of these names. Moreover, the challenge of writing complicated programs is
often dividing the program into smaller subsets and designing a method to make sense of
these divisions. I recall my high school programming textbook beginning with the statement
that a good programmer can write code that works, but an excellent programmer can write
code that another programmer can easily understand.

The entire purpose of high-level languages is to create human-comprehensible abstractions
that allow more efficient programming by creating ways to describe computation that exist
as a translation point between human abstractions and hardware. The first version of Simula
was explicitly seen as both a tool for programming and communication. The language was
initially conceptualized as a language for writing simulations; as such, it was designed to be
both a compilable programming language to run simulations and a language to describe the
real-world systems that were being simulated. The manual for Simula 1, the first version of
the Simula family of languages, states, “Attempts have been made to make the language
unifying—pointing out similarities and differences between systems, and directing—forcing
the research worker to consider all relevant aspects of the systems. Efforts have also been
made to make Simula descriptions easy to read and print and hence a useful tool for
communication” (Nygaard and Dahl 1978, p. 249). Thus, even at this relatively early stage
in the development of high-level programming languages and object-oriented methods, there
was a deep concern with providing for human communication.

Ultimately, while the compilability of a program and its set of rules for translation into
binary code constrain the possibilities of computer programs and language, the use of
programs to communicate between humans and the metaphors and abstractions permitted by
object-oriented languages produce languages that approximate the complexity and creativity
of “real languages.” To create effective means for programming requires developing a
language and system to translate the “real” world into computation and interact with
already-established modes of computation. To deny that programming languages are
somehow less real, less creative or have less to tell us about the world than other languages

proscribes a powerful opportunity to interrogate a whole class of rapidly changing
languages.

4. The Pre-History of the Object I: Simula
With these prefatory matters in mind, it is now possible to turn directly to the history of the
object as a means of thinking and writing programs. The earliest computer programs were
written in machine code, which operated directly on individual memory locations (each
block of memory has a unique address that high-level languages hide from the programmer)
and provided only the operations that the processor supported (e.g., add, multiply, and
Boolean logic). By the end of the 1940s, computers began including assemblers, which
would translate assembly code into machine code. Assembly languages provided the major
advantage of mnemonics or programmer-defined names that could be used to refer to
commands and memory locations rather than numbers used with machine code
(Salomon 1993). The mid-1950s saw the development of higher-level languages that began
to abstract some of the functions being done by the hardware into more human-
understandable concepts. These languages began to manage memory without requiring the
programmer to deal directly with locations in memory.

These early high-level languages were generally procedural; programs were constructed as a
sequential set of commands that followed one after the other (and would at certain points
return to an earlier point in the program or repeat a section or skip sections under certain
conditions). Structured programming approaches were added to allow programmers to reuse
parts of programs and minimize convoluted movements through the program creating what
is known as “spaghetti code.” Out of these attempts, to more coherently structure programs,
objects began to emerge. One of the earliest languages to begin moving away from
procedures towards objects was Simula, developed in the 1960s by Ole-Johan Dahl and
Kristen Nygaard at the Norwegian Computing Center (NCC).

Nygaard began the initial designs for Simula in 1960 upon his arrival at NCC. Simula went
through a number of revisions and was released as two separate languages. The first
functioning version, Simula I, was completed by the end of 1964 for a UNIVAC 1107
computer as part of an agreement between UNIVAC and NCC. Simula I was designed
primarily as a language for simulating complex systems and processes. The initial design
framework that Nygaard and Dahl began underwent significant revisions in the early 1960s
before they produced a functional compiler. The original concept for the language was
based around a series of stations, each of which would handle a queue of customers. The
customers were treated as passive data structures; they only contained variables (in the case
of an airport passport number, seat assignment, whether their ticket was paid, etc.). The

stations, as active processes, would then interact with the customers’ variables and assign
the customers to a different station’s queue (or remove them from the program). Apparently,
this early design was influenced by the desire to simulate an airport departure system, as it
is consistently used as an example throughout Nygaard and Dahl’s discussion of the
framework (Nygaard and Dahl 1978; Krogdahl 2003). They attempted to find language to
describe what exists in the world and at the same translate that language into computation.
Even in its very early stages, we can see how intimately the development of object-oriented
programming touched on philosophical and ontological questions.

As Nygaard and Dahl wrestled with these concepts prior to the implementation of Simula I,
they began to abstract this dual ontology of a network of active stations and passive
customers towards a single ontology of processes. Instead of representing the system as
consisting of separate passive and activate processes, they began to shift towards a system
of processes that contained both active and passive elements (Holmevik 1994). In a 1978
text written by Nygaard and Dahl describing the development of Simula, they explain
The airport departure system could be considered from a “dual” point of view: It could be
described by active passengers, grabbing and holding the passive counter clerks, fee
collectors etc. Then we realized that it was also possible to adopt an “in-between” or
“balanced” point of view: describing the passengers (customers) as active in moving from
station to station, passive in their interaction with the service parts of stations. These
observations seemed to apply to a large number of situations. Finally, in our search for still
wider classes of systems to be used to test our concepts, we found important examples of
systems which we felt could not naturally be regarded as “networks” in the sense we had
used the term…The result of this development was the abandonment of the “network”
concept and the introduction of processes as the basic, unifying concept (p. 249).

We can witness here a very condensed process of (programming) linguistic abstraction. The
initial language, based on a certain system, is confronted with different concrete systems
that force the abstraction to change and account for these new systems. Thus, the dualistic
system of stations and customers is replaced by a more nimble and robust metaphor of
processes. Moreover, around the same time that they introduced the notion of processes, the
language formally differentiated the description of a process from the process itself. Within
Simula I, a process is declared with the keyword “activity”; thus, a program could be
thought of as describing “activities,” which then were used to produce individual
“processes” (Krogdahl 2003). In a sense, the activity declaration could be thought of as a
platonic idea that describes how a process should be built and function, describing its
essential characteristics, and then upon being run, the program could produce multiple
instances of the activities that would have concrete values and states associated with the
variables described in the declaration (many contemporary OOP languages refer to this
same distinction as classes and objects—where a class describes how the object functions
and then the program produces multiple objects as instances of the class). Thus, while
shifting from an ontological system of computation in which the world consists of two types
of object to a single type of object, Dahl and Nygaard bifurcated their ontology along
another line into a separation between concept (or activity in their language) and process.
These developments were not only a change in metaphors but also produced changes in the
underlying code of the compiler. At this point, Nygaard and Dahl decided to abandon the
initial plans of creating Simula as a preprocessor for ALGOL, a language that while not
particularly well adopted, constituted a major development in the theory of programming
languages.6 As a result of the abstractions they were writing into Simula, the underlying
data structure (the way in which information is organized and represented as bits within
memory) used by ALGOL was not flexible enough for their purposes. So, they created a
completely new compiler that could handle both ALGOL code and data types along with the
more flexible data structures that Simula required. Thus, the development of Simula
proceeded and was constrained along two fronts. The language required an adequate
underlying system for managing the data structure and the central metaphor of processes
had to account for systems and objects in the world that were to be described and translated
into compilable code. The challenge that confronted Dahl and Nygaard was to create a
language that could translate between these two fronts.

In addition to these concerns, one of the goals of Simula I, as a simulation system, was to
allow for quasi-parallel processes. Since a simulated system would have multiple processes
occurring simultaneously, the language required a method whereby a pseudo-system time
would allow the emulation of multiple processes. For example, in the case of simulating an
airport, multiple counters would be serving customers simultaneously. Since the machines

that Simula ran on could only process a single instruction at a time, simulating multiple
processes required scheduling turns so that the language could approximate simultaneity.
While this aspect of Simula was not maintained in many successor languages, it has again
become an issue as many large-scale programs are now run on multiple computer cores that
can split up tasks and actually compute them simultaneously.7 Still, this movement towards
multiple processes acting independently while influencing each other in the global
ecosystem of the program was an important step in moving from a series of commands to a
set of objects.

While Simula was not unique in developing in this direction, we can observe in this
movement a moment in a larger divergence between math and programming. Despite the
initial design plans, they quickly moved away from thinking of the language in terms of
mathematics, “We no longer regarded a system as described by a ‘general mathematical
structure’ and instead understood it as a variable collection of interacting processes—each
process being present in the program execution, the simulation, as an ALGOL stack”
(Nygaard and Dahl 1978, pp. 249–250). This statement is symptomatic of a much larger
rupture that has disrupted late twentieth and early twenty-first century science between the
primacy of computation and mathematics. Within computation, there are those such as
Nygaard and Dahl, who see programming breaking with mathematics, while there are those
who stress the mathematical nature of computation.8 Furthermore, there has been a
considerable amount of work in the semantics of programming languages that while
recognizing the divergence between programming language and pure mathematics or logic,
has attempted to create mathematical descriptions of these computational
systems.9 Likewise, within the physical sciences, some now see a universe that builds
chaotic processes out of a near-infinite number of simple processes running and interacting
concurrently rather than deep mathematical structures.10 Math and computation are
obviously related, but the question that simultaneously unites the two and inscribes their
difference is whether math explains a fundamentally computational world or the other way
around. Regardless of which wins out in the end, the important point for our purposes is that
in this movement away from being exclusively mathematical, computers quickly came to
contain multitudes. While pure mathematical computation will always be possible for
computers, increasingly, they have become machines for working on data and computing
complex systems out of large collections of relatively simple interactions and processes.

With the transition from a dual ontology to a single ontology of processes and the
movement from mathematics to pseudo-parallel interacting processes, Simula I succeeded in
the computational ecology of the mid-1960s. Throughout 1965 and 1966, Dahl and Nygaard
taught and promoted the language. As its use expanded, they realized that its underlying

architecture could be generalized even further from a simulation language for ALGOL to a
general programming language (Holmevik 1994, pg. 32). In developing a second version of
Simula, they were heavily influenced by the work of C.A.R Hoare on record classes and
subclasses, which he presented at a conference in the summer of 1966
(Dahl 2004).11 Hoare’s work contributed the notion that one could describe a broader data
structure and then also describe more specific versions of that data structure. For example,
one could describe a number of things about “vehicles” and then also define more
specifically programmatic differences between “cars” and “trucks.” With this and a number
of lessons from Simula I in mind, they commenced developing what would become Simula
67. They began designing the new language and presented a paper at a computer language
conference (IFIP TC2) in Oslo in May of 1967. That same month, they signed a contract
with Control Data to implement the still-unfinished language. The following month, the
Simula 67 Common Base Conference was held to oversee the specification for the language.
Under the auspices of the Simula Standardization Group, which was created out of the
common base conference, a finalized specification was created and the first compilers were
released in 1969 (Holmevik 1994).

While the increased involvement of committees and groups speaks to the growing
complexity and interest in Simula, the most important philosophical shift between the first
and second versions of Simula was the replacement of processes with objects. Dahl (2004)
explains the difference by stating:

The most important new concept of Simula 67 is surely the idea of data
structures with associated operators (and with or without own actions), called
objects. There is an important difference, except in trivial cases, between: the
inside view of an object, understood in terms of local variables, possibly
initialising operations establishing an invariant, and implemented procedures
operating on the variables maintaining the invariant, and the outside view, as
presented by the remotely accessible procedures, including some generating
mechanism, dealing with more “abstract” entities. This difference, as
indicated by the car example in Simula I, and the associated comments,
underlies much of our program designs from an early time on, although not
usually conscious and certainly not explicitly formulated (p. 21). [Italics
mine]

For Dahl and Nygaard, two main changes differentiate the process from the object. First, a
distinction is drawn between the inside and the outside of the object. In contemporary terms,
this is referred to as encapsulation. The inside of the object is protected from other objects

and the global program, and only functions that are part of the object have access to internal
elements. For example, in the case of an airport ticketing system, the variable that stores the
seat number could only be accessible from within a ticket object. A function could be
created to change the seat number that would guarantee that it could only be set to a valid
seat and if the change required an upgrade to first class require that the upgrade fee be paid.
In complex programs, this helps prevent programming mistakes by allowing objects to
guarantee that their internal states are kept within expected limits and to make sure that two
parts of a program treat a data structure consistently. Second, with the movement from
processes for simulation to a general schema of computational objects, simulation and the
quasi-parallel simultaneity of Simula I become special instances of the general
scheme.12 With Simula 67, the simulated time of Simula I was no longer included as a
native element of the language but could be created with a “simulation class” that would
allow objects to interact in pseudo-parallel.13

Thus, the process-based ontology of Simula I was replaced by an object-oriented ontology
in Simula 67. With this shift, time drops out as a fundamental ontological component and
the object is left to manage its own internal affairs. We can see in this how much the work
of creating programming languages is a process of describing the world and crafting a
language that can allow the programmer to describe a world of computation. It is a
developmental process, wherein certain ideas and metaphors for computation have
succeeded and others have fallen aside. Specifically, in the case of the Simula languages, we
see a development away from a process-oriented world towards one of objects and explicitly
towards objects that are defined by their withdrawal from the world. While processes are
entirely exposed, objects hide some of their functioning in order to allow the programmer to
separate the work of defining the object’s functioning and the interactions with other
already encapsulated object. In the few short years between the initial design for Simula and
Simula 67, the combined necessities of computation, thought, and language completely
rearrange the planned metaphor for describing the world drawing significantly closer to a
fully object-oriented mode of programming.

5. The Pre-History of the Object II: Sketchpad
The other early influence on object-oriented programming, Sketchpad, was designed to
support computer graphics and became a major precursor to computer-assisted design
(CAD). Ivan Sutherland developed Sketchpad a few years prior to the first version of
Simula as part of his doctoral thesis at MIT in 1963 under the supervision of Claude
Shannon, a pioneer in computation and the founder of modern information theory.
Sketchpad was revolutionary on a number of fronts; it essentially founded the field of
computer graphics and was a major influence on the graphical user interfaces that came to

dominate desktop computing. Sketchpad allowed a user to draw and manipulate lines and
shapes on a computer using a light pen in much the same way that mice and trackpads are
used today. Sketchpad was not simply a graphic drawing tool; it was designed to aid in
drafting work and attempted to add features to this work by going beyond what was possible
by hand. The software allowed a user to create master drawings that could then easily be
reproduced and added as instances to another drawing. Hence, if one were designing a
circuit, a single master transistor symbol could be drawn and then the actual drawing would
link to the master; so if a user updated the master drawing, it would automatically update
each instance. Moreover, the software stored the topology of the drawing; such that if a
transistor symbol were moved, the software would move the lines connected to it. One can
see here the basic outlines of an object-based model in the relationship between master
drawings and instances. Thus, while Sketchpad presented a very different programming
interface to the user than what is normally thought of as a programming “language,” the
interaction provided by sketchpad in a sense allows for object-oriented drawing. Each of the
subdrawings were encapsulated and left to handle their own affairs, while the “programmer”
or drafter is working on another level of the drawing.

According to Sutherland’s account of the development of Sketchpad, there was a very
similar process to Nygaard and Dahl’s in which he began with an attempt to create a certain
model in software that was generalized and abstracted over time. In the earliest stages of
development, Sutherland worked to implement “strong conditions” that would allow a user
to carry out common drafting techniques. Sutherland (2003) says of these early designs, “At
this time a notion of ‘strong conditions’ was used to give geometric nicety the drawing. For
example, lines could be drawn parallel or perpendicular to existing lines but carried no
permanent trace of the relationship other than the accident of their position. This early effort
in effect provided the T-square and triangle capabilities of conventional drafting (pp. 32–
33).” While the initial plan was to essentially create digital versions of drafting tools,
Sutherland in consultation with his advisor abandoned this plan and instead created a
generic structure for defining arbitrary constraints (Shannon also convinced him to include
the capability to draw circles in addition to lines). Sutherland (2003) says of this shift,
Out of these talks came the conviction that a generic structure would be necessary if the
system were to be made easy to expand. On June 9, 1962 all this new information came to a
head and an entirely new system was begun which has grown with relatively little change
into the final version described here. Had I the work to do again, I could start afresh with
the sure knowledge that generic structure…would more than recompense the effort involved
in achieving them (p. 35).

So, we see here a similar movement towards abstraction; the attempt to emulate a limited set
of elements, such as a T-square, is expanded, increasing the conceptual complexity of the
language overall but making it more efficient once the central metaphor is understood.
Moreover, just like in the case of Simula, Sutherland had to develop a new way to store the
raw data for his program in order to link the conceptual innovations of Sketchpad with the
underlying structure of the bits. In order to effectively store the topological relations of a
drawing, Sutherland invented a ring structure. The ring structure was used to make it easy to
update a drawing without having to search for all of the connected points. For instance, one
“ring” may consist of all of the lines terminating in a given point; so if the point is moved,
the computer simply goes around the ring until it has updated all of the lines. And, each ring
is linked to other components by a “chicken” element, “The hen pair is contained within a
block which will be referred to, for example, in a point block, while the chicken pair is
contained in a block making reference to another, for example, a line block making
reference to the point” (Sutherland 2003, p. 41). It is perhaps an unfortunate accident of
history, or a result of the decline of American agriculture, that later languages never used
this particular terminology of chickens and hens. Regardless, with Sketchpad, as we saw
with Simula, the language developed simultaneously along two tracks. The desire for a new
metaphor to conceptualize, in this case, drawing required both the creation of a workable
generalized metaphor and at the same time the creation of an organizational schema for the
raw bits.

Still, this organization of the bits was not created ex nihilo but built on previous
abstractions. The most basic of these abstractions are built in at the level of hardware, as
computers are designed to operate on “words.” A word is the standard number of bits that
are treated as an addressable unit by the computer (in contemporary computers, this is most
often 32 or 64 bits). So, even machine code operates not directly on bits but on collections
of bits. Building up from words, different data structures organize these words into
structures that aid in computation. Sutherland developed his ring structure based on n-
component elements, a method of storing complex data types that consisted of multiple
linked simple data types developed by Douglas Ross. Incidentally, Ross’s work also
happened to be a major influence on Hoare’s concept of record classes. As we saw above,
record classes were a major influence on the design of objects in Simula 67 (Blackwell and
Rodden 2003).

Ross’s n-component elements were part of a more general scheme that he designed for an
abstract data type that he called a plex. He initially described a plex in 1961 as, “much more
powerful than list or tree structures (including them as subcases) and appears to be better
suited for the concise representation of the complex interrelations of elements which

constitute a ‘problem’” (Ross 1961, p. 147). In comparison with other existing data
types, plexes, and with them n-component elements, were significantly more abstract and
could store much more complicated types of data. In the development of this idea, along
with many of the other central advances of OOP, there can be seen a major shift away from
thinking of computation as either mathematics or simply as a series of processes. Instead,
even with Ross’ plexes, computation began to be presented as an ecology
of complex interacting elements.14

With the development of Sketchpad and the advent of computer graphics, the creation of
separable elements as a means for understanding computation provided a distinct advantage
as elements could be manipulated and designed and then ignored in order to work on
another level of abstraction. This has served to be an effective way to work with computer
graphics, as each element can be treated on its own and the element can control many of its
actions internally. For example, in contemporary operating systems, windows, icons, and
other elements can be programmed once and then multiple instances can be created. With
Simula, creating a set of processes, and then later objects, served as a means to describe a
simulation of the world. With Sketchpad, we see the description and creation of a visual
world internal to the computer, “At the outset of the research no one had ever drawn
engineering drawings directly on a computer display with nearly the facility now possible,
and consequently no one knew what it would be like” (Sutherland 2003, p. 28). With the
rise of computers as graphical systems with complex interactions, computers now contain
worlds onto themselves. The object-like systems that Sutherland created, along with the data
structures that allowed for these systems, played a key role in developing the conditions for
the construction of these worlds and their presentation to the general population.

6. The Beginning of Object Orientation: Smalltalk
Thus, the digital object ossifies out of two histories, one virtual and another visual. Within
computation, the object arises out of a desire to create a model of the world within the
computer but at the same time out of an attempt to create a whole new visual world native to
the computer. In both attempts at creating a world, the object, or the drawing in the case of
Sketchpad, appears as a necessity due largely to increasing complexity and a desire by the
designers of these languages to allow elements to handle their own affairs. One of the key
organizational benefits of object-oriented programming is the ability to write the functions
and data structures for objects and then ignore or forget what is going on inside the object
and only function on the purposefully exposed external aspects of the object.

While Simula 67 contained objects and Sketchpad produced object-like subdrawings with
topological constraints, Alan Kay saw in objects a whole programming philosophy. It was

this philosophy that he infused into Smalltalk, a language developed by Kay to be
completely object-oriented and teach users how to conceptualize programming. The earlier
languages offered objects or object-like behaviors as a possible method for controlling
programs, but Smalltalk was designed to consist solely of objects that passed messages
between themselves. Kay, along with Dan Ingalls and Adele Goldberg who worked on the
language and its implementation, raised the notion of objects to an overarching concept that
could encapsulate the entire programming system, “I spent a fair amount of time thinking
about how objects could be characterized as universal computers without having to have any
exceptions in the central metaphor” (Kay 1996, p. 258). Smalltalk built explicitly upon the
developments of Simula and Sketchpad but was oriented towards a new age of personal
computing.

Millions of potential users meant that the user interface would have to become a learning
environment along the lines of Montessori and Bruner; and needs for large scope, reduction
in complexity, and end-user literacy would require that data and control structures be done
away with in favor of a more biological scheme of protected universal cells interacting only
through messages that could mimic any desired behavior (Kay 1996, p. 511).
Much of Kay’s work on Smalltalk was aimed at a project to build a small personal computer
that children could use to learn how to program. Kay was invested in developing Smalltalk
as a language that would be conceptually tight and could be used to teach programming. All
of the versions of Smalltalk prior to its 1980 version, known as Smalltalk-80, were
not publicly released and kept largely internal to Xerox PARC, where Alan Kay led the
Learning Research Group. The first version of Smalltalk was developed in 1971, largely as a
proof of concept. Between 1971 and 1980, a number of versions were developed and
systems built in the language to make it useable on a machine with bitmap graphic
capabilities. Smalltalk-80 was ultimately released publicly, and the entire August 1981 issue
of Byte Magazine was devoted to the language.

Even more than in Sketchpad and Simula, there is a clear philosophical and pedagogical
interest in presenting a unifying metaphor for computation in Kay’s writing about Smalltalk.
Here, he attests to his philosophical method for conceptualizing computer programming.
Philosophically, Smalltalk’s objects have much in common with the monads of Leibniz and
the notions of 20th century physics and biology. Its way of making objects is quite Platonic
in that some of them act as idealisations of concepts—Ideas—from which manifestations
can be created. That the Ideas are themselves manifestations (of the Idea-Idea) and that the
Idea-Idea is a-kind-of Manifestation-Idea—which is a-kind-of itself, so that the system is
completely self-describing—would have been appreciated by Plato as an extremely practical
joke (Kay 1996, pp. 512–513).

In this conception of Smalltalk and object-oriented programming, the dual ontologies that
were present in both Sketchpad and Simula are flattened to a single ontology, such that even
classes are instances of the idea of classes (Smalltalk-80 introduced a second ontological
notion, metaclasses, but Kay was less involved at that point in the project and believes they
were unnecessary—in these movements, there is not a single evolutionary tendency and the
ontological systems proposed are unstable and shifting; Kay 1996). Even platonic ideas
became idea-objects. Robson (1981, p. 86) puts this even more succinctly, when describing
object-oriented programming in the Smalltalk issue of Byte, stating, “In a system that is
uniformly object-oriented, a class is an object itself.” The class itself becomes merely a
specific type of object.

Kay also pushed human language further into the computer by advocating for late binding of
variables. Late binding simply means that variables and methods are not directly mapped in
the compiled program and instead names are used to reference variables and methods; such
that they can be mapped at a later time. The idea of late binding had existed in previous
languages such as LISP, but Kay raised it to a principle of OOP. In a discussion of the
meaning of OOP he says, “OOP to me means only messaging, local retention, and
protection and hiding of state-process, and extreme late-binding of all things” (Kay and
Ram 2003). While in many instances late binding slows down the execution of a program,
because methods have to be looked up at run-time, it simplifies the process of keeping track
of and modifying how a program runs. Moreover, such a design pushes language even
further into the operation of the program by maintaining variable names in the compiled
code.

Smalltalk also advanced this metaphor of computation as objects along another related track
that turned computation into a self-referential system of interacting computers. Kay (1996)
describes this understanding of objects in relation to computers:

Smalltalk is a recursion on the notion of computer itself. Instead of dividing
“computer stuff” into things each less strong than the whole—like data
structures, procedures, and functions which are the usual paraphernalia of
programming languages—each Smalltalk object is a recursion on the entire
possibilities of the computer. Thus its semantics are a bit like having
thousands and thousands of computer all hooked together by a very fast
network. Questions of concrete representation can thus be postponed almost
indefinitely because we are mainly concerned that the computers behave
appropriately, and are interested in particular strategies only if the results are
off or come back too slowly. (p. 513)

Thus, even more than simply reducing computation to a series of objects, computation by
way of objects became completely synonymous with objects. Each computer became an
object and each object a simulated computer. Kay ultimately attempted to close his own
ontological circle and find object-computers recursively defining each other and infinitively
deferring any concrete representation. It is striking how much this vision anticipated the
current world of networked computers with large cloud-based tasks spread across multiple
individual machines.

In order to advance this flat and recursive ontology of computation, objects required a
method of interaction. In Kay’s metaphor for computation, there could be no transcendental
system that could handle the interactions between objects, and so, messaging became
important to allow objects to communicate independently. Messages were central to the
coherence of the object metaphor of computation, “Smalltalk’s design—and existence—is
due to the insight that everything we can describe can be represented by the recursive
composition of a single kind of behavioral building block that hides its combination of state
and process inside itself and can be dealt with only through the exchange of messages”
(Kay 1996, p. 512). This insight is central to object orientation; in order to reduce the world
to a single building block, which handles its own affairs, there must be a means of
communication between the objects.15 For objects to be possible units of computation, they
must have recourse to messages. Messages and objects ossify out of computation-as-
procedure simultaneously. There is no object before the relation between them; otherwise,
one is left with a null object that refuses the very possibility of computation. While Kay
adopted the term “object-oriented programming” in the early 1970s to describe this
philosophy of programming, it very well could be called message-oriented programming.16

7. Towards a Theory of Objects
Within the object-oriented paradigm of programming, objects were invented for the purpose
and benefit of abstracting the real. The computational real is not made of objects or even of
“numbers”; rather, the real is comprised of bits. But even the bits are abstractions born of
language, underneath them there is merely a difference of voltage, levels of light intensity,
or a direction of magnetization. The digital itself is a way to engage analog electrical change
over the time of the signal or the space of memory as an object that can be assumed to be
stable. From pure electric difference moving through the material stratum of the computer,
we forge bits; these bits give rise to numbers and commands. Out of these basic
abstractions, more complex abstractions are created through language and metaphor. The
computer comes to operate on processes, functions, classes, and objects as a result of its
collision with human language. None of these objects, e.g., bits, functions, classes, and even
the object that Smalltalk invented, exist as objects outside of language. This is not to say

that they are only linguistic or that they do not really exist. The digital real exists and exerts
itself within its ossification into object form, but in the real, there are no objects, merely a
vast field of electric difference. Likewise, it is not to say that everything is language or that
everything is material. A discourse that does not affect the electronic system within the
machine can never flip a bit. Conversely, for electric difference to mean anything, it must be
delimited as an object, process, or other data type within language. Programming is a
process and system of representing and simultaneously hiding the real in language.

In this movement from the computational real to the object, nothing is hidden a priori. What
we could term “objectification,” the creation of an object in language out of a series of
processes, withdraws and hides part of the object’s operation from the programmer. We can
have access to everything about the object, yet something must be hidden in order to
proceed in the task of abstracting and programming anything but the most trivial or
exclusively mathematical system. The status of any given bit can be queried and revealed,
but in order to interact with a computer meaningfully and productively requires obfuscating
the overwhelming scale and complexity of the individual bits. One of OOP’s main
advantages is the ability to encapsulate objects and leave their internal affairs to the objects.
Apropos Smalltalk, the object is created through a double movement. On the one hand, the
object is encapsulated and made to withdraw; simultaneously, interfaces are created such
that the objects can exchange messages with other objects. Even in these attempts to flatten
the ontology of computation to a single, recursively defined building block, new modes of
existence keep arising, classes, messages, metaclasses, etc. At least in terms of computing,
objects are neither the “natural” building block of computation nor the inevitable outcome
of a process of abstraction or increasing complexity. Rather, they are a negotiated and
unstable means of counting the computational real, modeling and creating worlds inside and
outside the computer and interfacing computation with human language. Moreover, even if
one were to take an evolutionary position on the development of programming languages, it
is not clear that the existence of a specific set of objects is the end result of such an
evolution. Within an object-oriented programming framework, there is not a “correct” set of
objects that one must work with. Furthermore, there is not even a correct way to define what
an object is; different ontologies emerge from the logic and metaphors of different
languages. The whole task of designing a program involves determining how best to delimit
the set of objects and their interfaces that will constitute the program. Thus, both the
creators of programming languages and programmers themselves must do ontological work,
in so much as a given program must be broken into its ontological components (whether
they are objects, classes, procedures, etc.).

Alt (2011, p.292), in suggesting that object-oriented programming was the major advance
that turned computers from calculating machines into media, argues, “Encapsulation
requires the programmer to conceive the space of the program as embodied, three-
dimensional space containing multiple individual subjectivities.” It is precisely the process
of this creation of these subjectivities that handle their own affairs that is of critical
importance in any theory of the object. The creation and encapsulation of these objects
place demands on users, programmers, and other subjects from the moment of their creation
and delimitation. In sum, a philosophy of objects that would learn from the philosophy and
history of OOP must take up as one of its central tasks a serious consideration of the way in
which objects are demarcated in language and the implications any set of objects, or
ontology, has on the global ecology of objects.

Here, we find ourselves at odds with philosophers who insist on the concrete existence of
objects. The most radical interpretation of the history of object-oriented programming leads
us to the proposition that even if we accept the reality of bits, or electrical difference,
objects, as unique bundles of substance, exist only through language (or something
analogous to language—as the object-oriented ontologists’ attempt to push philosophy
beyond the human is commendable). This is not to say that they are not real, but that their
delimitation as unique things exists in language even though the substance of objects is
material. Thus, this is not at all an idealist or anti-realist position. There are bits and electric
current that are undeniably real, but their organization into objects is a function of language.
In this, we arrive at a similar position to the one Smith (1996) presents in his text, On the
Origin of Objects, in which he draws from Computer Science to claim that objects must be
“registered.” Likewise, we are very close to Barad’s agential realism (2007), inspired by her
research in quantum mechanics, in which a scientific or social apparatus makes an agential
cut that co-creates both subject and object.

One could argue that perhaps what we see in this history is not the creation of objects as an
ontological element but rather the development of a language to such a level of complexity
that it is finally able to describe objects that already exist in the world outside of language.
Against this objection, it must be noted that what we witness in this history, what drives it
forward, is the difficulty of relating language to world, whether it is a simulated world or a
new world of computer graphics. Moreover, the examples presented here and in the
textbooks and manuals for object-oriented programming demonstrate the often-difficult art
of defining the objects that will constitute a given system. Not only are individual objects
unstable but even the very concept of what an “object” is, how they are to function, and
their relation to the rest of the system are unstable and negotiated through the construction
of these various languages.17 With object-oriented programming, we are confronted with a

whole series of emergent ontologies rather than a single notion of objects that is merely to
be filled in.

The difficulties of developing and using these languages to describe a problem speak to the
non-predetermined boundaries of the computational real. In fact, one of the major
programming problems that can compromise computer systems’ security is known as a
buffer overflow. Buffer overflows happen when the program expects a variable to be
smaller than a certain size, but a larger number or string is inserted into the variable. The
program keeps writing the entire data, overflowing the intended variable and depositing bits
into other variables, potentially causing programs to crash. Because programs store data and
commands in the same place, buffer overflows can be used maliciously to take over a
machine by inserting new commands into the memory locations that will be executed. Thus,
even the primitive data types of computation are subject to overflowing their bounds since
the boundaries are a convention of language and not inscribed directly into the
computational real. Even these basic objects of computation leak and overflow. It is only
through mechanisms within programming languages themselves that these boundaries can
be defined and secured. Language must secure its own boundaries.

8. Conclusion: Object Orientations and Their Discontents
We arrive then at a notion of object orientation that is markedly different from that
advocated by object-oriented ontologists. While there are any number of flavors of new
realisms and materialisms, the history of OOP seems to have the most to say about those
who identify their philosophy with a realism founded on the solidity of objects, like
Harman. For Harman, the founder of object-oriented ontology, the world is made up of
objects and the task of an effective philosophy is to speculate about the implications of their
interactions with and without human intervention. In an argument based upon his reading of
Heidegger, he claims that objects have depth and are withdrawn from each other preventing
anyone or anything from accessing their totality. Harman (2011, p. 22) is explicit about his
object orientation and the existence of objects stating, “the ‘object-oriented’ part of the
phrase is enough to distinguish it from the other variants of speculative realism. By
‘objects’ I mean unified entities with specific qualities that are autonomous from us and
from each other.” Likewise, while Meillassoux (2008) does not identify himself as an
object-oriented philosopher, his entire argument in After Finitude consists of a thought
experiment founded on the reality of a bounded and finite “ancestral” object. While there
are a number of debates internal to speculative realism and its offshoots, which are too
numerous and detailed to recount here, this fidelity to the notion of objects in Harman and
other’s thought is squarely at odds with the underlying philosophy and task of object-
oriented programming.

From those dedicated to object-oriented philosophy, little has been said about object-
oriented programming and the philosophical claims of its creators. One of the only
connections between these two philosophies is an article critical of both written by
Galloway (2013). Galloway claims that object-oriented philosophy (and with it a number of
philosophies built on mathematical foundations, such as Badiou and Mellasioux’s work) is
politically implicated in its structural complicity with object-oriented programming, which
he sees as the central technology underwriting global capitalism. Galloway correctly points
out how apolitical many of the object-oriented philosophers tend to be in their attempts to
separate ontology from politics. Moreover, even when they make political claims, they tend
to amount to little more than saying that we will be able to somehow develop a politics
addressing our debt to our surroundings if we treat objects seriously. Beyond expanding the
social to include objects, they offer little in terms of how to operate in this society of objects
or how one would develop a political or ethical system out of it. Despite Galloway’s
recognition of this anti-political tendency, it seems clear in the light of the history of object-
oriented programming that there is in fact a large gulf between object-oriented programming
and object-oriented philosophy.

To take OOP seriously as a philosophical and ontological endeavor requires a very different
form of philosophy than the present object-oriented ontology. If we understand objects to be
an abstraction of the real that ease our ability to understand and live within its complexity,
all the while obfuscating the underlying processes, it becomes possible to envision a form of
object-oriented philosophy that would seek not to understand what objects exist but how and
to what ends the real could be described as objects, processes, or other ontological
categories. Instead of accepting as given the boundaries between objects, an object-oriented
philosophy that follows the lessons of OOP must explore both our popular understanding of
objects and new possible segmentations of the real. While such a project could take a
number of turns, perhaps the Marxist critique of objectification and the solidification of
social relations into commodities could provide an inspired starting point for a philosophy
that would explicitly call out the need to be aware of the political nature and social
implications of any ontological system and its assumptions about the solidity of objects and
attributes. Against the solidity of objects gaining popularity in certain quarters, a philosophy
informed by the genealogy of the digital object must confront and understand the multitude
of ways in which the real can be divided, described, and understood.

References
Abadi, M. and Cardelli L. (1995). An imperative object calculus. TAPSOFT’95: Theory and
Practice of Software Development, 469–485.

Abadi, M., & Cardelli, L. (1996). A theory of objects. New York: Springer.
Alt, C. (2011). Objects of our affection: how object orientation made computers a medium.
In E. Huhtamo & J. Parrika (Eds.),Media archaeology: approaches, applications, and
implications. Oakland: University of California Press.

Barad, K. (2007). Meeting the universe halfway: quantum physics and the entanglement of
matter and meaning. Durham: Duke University Press.

Blackwell, A. and Rodden, K. (2003). Preface in Sutherland, (pp. 3–6).

Bloch. (2001). Effective Java. Boston: Addison-Wesley.

Dahl, O. (2004). The birth of object orientation: the Simula Languages in from object-
orientation to formal methods, lecture notes in computer science, 2635 of the series Lecture
Notes in Computer Science, 15–25

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1), 107–113.

Derrida, J. (1993). Circumfessions in Bennington, G. and Derrida, J. Jacques Derrida.
Chicago: University of Chicago Press.

Evens, A. (2006). Object-oriented ontology, or programming’s creative fold. Angelaki:
Journal of Theoretical Humanities, 11(1), 89–97.

Galloway, A. (2004). Protocol: how control exists after decentralization. Cambridge: MIT
Press.

Galloway, A. (2006). Language wants to be overlooked: on software and ideology. Journal
of Visual Culture, 5(3), 315–331.

Galloway, A. (2013). The poverty of philosophy: realism and post-Fordism. Critical
Inquiry, 39(2), 347–366.

Goetz, B. (2004). Java theory and practice: fixing the Java memory model, Part 2.
IBM.https://www.ibm.com/developerworks/library/j-jtp03304/j-jtp03304-pdf.pdf

Golumbia, D. (2009). The cultural logic of computation. Boston: Harvard University Press.

Harman, G. (2011). On the undermining of objects: grant, Bruno, and radical philosophy. In

L. Bryant, N. Srnicek, and G. Harman (Eds.), The speculative turn: continental materialism
and realism (pp. 21–40). Victoria: re. Press, 2011.

Hayles, K. (1999). How we became posthuman: virtual bodies in cybernetics, literature, and
informatics. Chicago: University of Chicago Press.

Holmevik, J. (1994). Compiling SIMULA: a historical study of technological genesis. IEEE
Annals of the History of Computing, 16(4), 25–37.

Kafura, D., & Lavender, G. (1993). Concurrent object-oriented languages and the
inheritance anomaly. In M. Quinn (Ed.), Parallel computers: theory and practice (pp. 221–
264). New York: McGraw-Hill.

Kay, A. (1996). The early history of Smalltalk in history of programming languages II (pp.
511–598). New York: Association for Computing Machinery.

Kay, A. and Ram, S. (2003). On the meaning of “object-oriented programming.” E-mail
exchange. http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en .
Accessed: 15 December 2015

Kittler, F. (1995). There is no software. CTheory, 10(18), 147–155.

Kittler, F. (1999). Gramophone, film, typewriter. Translated by Winthrop-Young, G. and
Wutz, M. Stanford: Stanford University Press.

Krogdahl, S. (2003). The birth of Simula. HiNC 1 (History of Nordic Computing)
Conference.

Manovich. (2013). Software takes command. New York: Bloomsbury.

Milner, R. (1999). Communicating and mobile systems: the π-calculus. Cambridge:
Cambridge University Press.

Nygaard, K., & Dahl, O. (1978). The development of the SIMULA languages I. ACM
SIGPLAN Notices, 13(8), 245–272.

Meillassoux, Q. (2008). After finitude: an essay on the necessity of contingency. Translated
by Brassier, R. London: Continuum.

Priestley, M. (2011). A science of operations. New York: Springer.

Robson, D. (1981). Object-oriented software systems. Byte Magazine, 6(8), 74–82.

Ross, D. (1961). A generalized technique for symbol manipulation and numerical
calculation. Communications of the ACM, 4(3), 147–150.

Salomon, D. (1993). Assemblers and loaders. West Sussex: Ellis Horwood.
Available:http://www.davidsalomon.name/assem.advertis/asl.pdf .

Smith, B. (1996). On the origin of objects. Cambridge: MIT Press.

Sutherland, I. (2003). Sketchpad: a man–machine graphical communication system.
Cambridge: University of Cambridge.

Thacker, E. (2004). Foreword: protocol is as protocol does in Galloway, a. protocol: how
control exists after decentralization (pp. xi-xxii). Cambridge: MIT Press.

White, G. (2004). The philosophy of computer languages in Floridi, L. The Blackwell Guide
to the Philosophy of Computing and Information (237–247). Oxford: Blackwell Publishing.

Wolfram, S. (2002). A new kind of science. Champaign: Wolfram Media.

Yares, E. (2013). 50 years of CAD. Design World, February 13, 2013

Endnotes

1 Abadi and Cardelli (1996) outline a taxonomy that attempts to account for the variety of object-oriented

languages while suggesting a unifying system for explaining them. The complexity of this taxonomy and the

changes that “objects” have undergone over the course of their history suggest that the very concept of an object is

not fixed and must be worked out in language.
2 Krogdahl (2003) provides an extensive history of Simula. Priestley (2011) traces the history of both Simula and

Smalltalk. Manovich (2013) explores the history of Kay’s work on Smalltalk with a focus on the development of

the Dynabook. Kay (1996) provides one of the most comprehensive overviews of the history of Smalltalk. It

appears that little has been written about the history of Sketchpad. While informative, what has been written has

largely traced the history of computer graphics, such as Yares (2013). Additional histories, many of the most

instructive for present purposes written by those involved in designing these languages, are cited below.
3 Smalltalk is especially fruitful as an object of study in this regard, as Kay and his collaborators strove to

maintain a philosophical coherence to their language that reflected a complete theory of how computing could be

understood. Priestley (2011) notes that many later object-oriented programming languages, such as C++,

abandoned the rigorousness of Kay’s work in order to include elements of earlier styles of programming.
4 In addition to the below discussion of the negotiations and changes surrounding the development of Simula,

Sketchpad, and Smalltalk, see for example the changes made to the Java Memory Model in Goetz (2004).
5 I use the term “real” to describe the material aspects of computation following Kittler’s Lacanian-influenced

media-historic materialism (Kittler 1999).
6 Priestley (2011, 225) suggests that while Algol was not very successful in practical terms, “what changed the

face of programming was not simply the Algol 60 language but rather a coherent and comprehensive research

program within which the Algol 60 report had the status of a paradigmatic achievement, in the sense defined by the

historian of science Thomas Kuhn.”
7 See, for example, Dean and Ghemawat (2008).
8 Priestley (2011) argues that Algol was exemplary in attempting to unify a logical and mathematical structure of

programming that Smalltalk ultimately broke with. Moreover, there are still major developments in computer

science and programming that stress the mathematical nature of programming, for instance, Milner’s (1999) π-

calculus or Abadi and Cardelli’s description of an “object-calculus” (1995). Likewise, the growing importance of

encryption for computing has relied heavily upon and even pushed the development of number theory. While all of

these suggest an intimate relation between programming and mathematics, the development of these languages and

the purposeful abandonment of the language of mathematics in Simula and also later in Smalltalk (Priestley, 2011)

point to at the very least a conception of programming that moves away from mathematics, even if it could

potentially be recuperated.
9 The mathematical study of the semantics of programming languages functions as a possible “third way” between

mathematical and computation practices by attempting to mathematically define the emergent structures of

computation based on various programming languages. Moreover, the semantic descriptions of programming

languages have then been used to attempt to design future languages. In addition to Milner and Abadi and

Cardelli’s work (fn. 8), see White (2004).
10 Stephen Wolfram is one of the most vocal proponents of this notion of a computational rather than a

mathematical universe. For instance, see Wolfram (2002).
11 Hoare’s presentation at the NATO Vilard-de-Lans Summer School, where Dahl and Nygaard also presented

their work on Simula I is available: C.A.R. Hoare, “Record Handling,”

http://archive.computerhistory.org/resources/text/knuth_don_x4100/PDF_index/k-9-pdf/k-9-u2293-Record-

Handling-Hoare.pdf

12 While many of the ideas developed in Simula were aimed at concurrent processing, they were likely abandoned

in part because of the difficulty of constructing systems where objects can potentially end up dead-locked, as in the

dining philosopher’s problem, waiting for other objects who are waiting on them. Despite the movement away

from concurrency and simulation in many object-oriented programming languages, there is a continued interest in

the development of concurrent object-oriented programming languages. For a description of some approaches and

issues related to concurrency in OOP, see Kafura and Lavender (1993).
13 Dahl (2004) spells out an example of how this could be implemented.
14 Ross (1961) even suggests that one can use the control point in a program’s execution as a way of storing

information as there are certain parts of the program that can only be reached if certain conditions are true. Thus,

in a way, the temporal execution of the program becomes spatialized into a geography of information.
15 As Priestley (2011) argues, this decision to rely on messages further moved computation away from

mathematics as the interpretation of a given message was left up to the object that received it. For example, a

number could interpret “+” as mathematical addition, while a string could interpret it as concatenation (1 + 2 would

return 3, while “a” + “b” would return “ab”).
16 Kay discusses this decision in Kay and Ram (2003).
17 For example, a major element of many object-oriented programming languages is the notion of inheritance,

which allows a programmer to specify modified versions of a class. For example, one could define a class for

“animal” of which a “cat” would be a subclass, but it would inherit certain properties from the vehicle. Hoare

suggested such a model as part of his record classes (see fn. 10), and Simula 67 contained “prefix classes,” which

functioned roughly in this manner. While inheritance can greatly ease the amount of work that goes into creating

programs, it risks breaking encapsulation (see Bloch 2001, item 14, for a technical explanation of this

relationship), in so much as a class, and the objects created from it now rely on code that exists elsewhere. In short,

external taxonomies in language (in so much as inheritance creates a taxonomy of classes and subclasses)

ultimately reach inside and affect the internal functioning of objects. Thus, through the very demands of writing

and language, these objects are pulled outside of themselves, and we see the threat to autonomy and solidity that

both define and besiege objects.

