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Abstract 
Programming languages have developed significantly over the past century to provide 
complex models to think about and describe the world and processes of computation. Out of 
Alan Kay’s Smalltalk and a number of earlier languages, object-oriented programming has 
emerged as a preeminent mode of writing and organizing programs. Tracing the history of 
object-oriented programming from its origins in Simula and Sketchpad through Smalltalk, 
particularly its philosophical and technical developments, offers unique insights into 
philosophical questions about objects, language, and our digital technologies. These early 
attempts to understand objects as basic elements of computation demonstrate the ways in 
which language, while firmly planted in the material reality of computation, must delimit 
objects from each other. This essay critically explores this history and explicates a theory of 
objects suggested by the development of object-oriented programming languages, which 
insists on the importance of language for representing and delimiting objects. It argues that 
the philosophies behind object-oriented programming are ultimately opposed to the claims 
of object-oriented ontology and find themselves more closely allied with philosophies that 
insist on the mediation of what exists through language. 
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1. The Invention of the Object 
With the growing threat of ecological catastrophe, our increasing dependence on global 
material flows of goods and resources, and the realization that even our virtual worlds 
require massive material infrastructure, a number of diverse philosophical and scholarly 
discourses are turning (and returning) to considerations of materiality and explicitly the 
world of objects. Most notably, various forms of speculative realism (Mellasioux) and 



object-oriented ontology (Harman; Levi-Bryant; Morton; Bogost; while not directly 
recognized as a proponent of this ontology, Latour should count at the very least as a fellow 
traveler or perhaps a predecessor) have insisted on the importance of objects, especially the 
relations between objects beyond our limited human view. Many of these philosophies—
especially Harman’s—are based on the notion of solid objects that exist autonomously from 
each other. Despite the obvious allusion to object-oriented programming in the naming of 
object-oriented ontology, there are few descriptions of the relationship between object-
oriented programming (OOP) and said ontology. This is especially unfortunate as the 
history and philosophy that surround object-oriented programming offer a nuanced 
understanding of objects, their ability to hide part of themselves from the world, their 
relations, and their representation in languages that in many ways challenge the claims 
offered by object-oriented ontology. The philosophies that underlie OOP, likely as a result 
of the exigencies of creating functional systems, stress the relations between objects and the 
difficulties in conceptualizing objects as fully autonomous outside of the languages that 
address them. 
 
In order to fully explicate the technical-philosophical ideas that have been developed under 
the name of object-oriented programming, it is imperative to trace the ways in which the 
concept of an “object” as an element of programming was both envisioned and forced to 
change as a result of the practical and theoretical demands of the actual work of 
programming. This history suggests that both objects themselves and even the concept of 
what an object is are unstable and emergent.1 Developments in object-oriented programming 
continue, but perhaps, the most telling points of its philosophical implications are its earliest 
conception in Alan Kay’s Smalltalk and the two major influences that preceded it: Simula, a 
language designed for simulating complex systems, and Sketchpad, a program for creating 
computer-assisted drawings. While histories and explanations exist for all three languages, 
the present essay focuses on the technical means by which the notion of an object was 
created and the philosophical paths that brought programming to this point.2 As such, the 
main sources are largely drawn from the technical and philosophical descriptions laid out by 
the designers of these languages.3 Furthermore, it should be noted that these sources present 
a rigorous definition of how to understand programming that is likely rarely to be held up in 
the messy practice of writing actual programs. The most eloquent notions of how a program 
should be written often fall away under the stress of deadlines and the collaborative work of 
committees. Moreover, even the definitions of objects and other programming concepts 
offered are often ideal and aspirational; in the negotiation of actual implementation, they are 
frequently further unsettled as they are implemented in actual systems.4 Still in order to 
appreciate the relationship between objects and language, it is fruitful to follow the 



development of the lofty ideas that outline this type of programming and the 
groundbreaking innovations that have led to it. 
 
The term object-oriented programming describes both a style of writing computer code and 
a group of programming languages that are designed to be programmed in such a way. OOP 
offers unique insights into the creation of digital objects and the ways in which they are 
represented in a constantly developing field of languages. The advent of object-oriented 
programming exists within a much longer trend towards increasing abstraction in computer 
languages. This trend has moved programming languages further and further away from 
directly describing and operating on the individual bits, inputs, outputs, pixels, and switches 
that make up the hardware of a given computer to abstract concepts such as functions, 
objects, classes, and graphics. The history of programming languages runs from the use of 
addresses of small blocks of memory in a system (the actual physical storage of bits on hard 
drives and other media) to the use of primitive data types like integers, characters, and floats 
(variables with a floating decimal point); to more complex data types such a strings, lists, 
and arrays; and finally to complex, programmer-defined data structures that composite a 
variety of simpler data types. What is so striking about the work carried out in the 1960s 
and 1970s is precisely the way in which this increasing abstraction allowed programmers to 
think about “objects” as a useful metaphor for what was happening on the level of hardware 
or perhaps more accurately on the level of interaction between programmer and hardware. 
We can glimpse in this history a unique moment when a number of limited functional sets of 
operations proliferate, abstract, and coalesce to create a rich and diverse set of languages 
that begin to speak of objects, classes, and public and private properties. 
 
This trend towards abstraction has not occluded the possibility and necessity of 
programming at lower levels. Programmers still write machine code, especially when 
computational efficiency is extremely important or one needs to interact with the most basic 
aspects of a machine (e.g., parts of the program that loads the operating system and code 
written for certain microcontrollers). This history of increasing abstraction is not one of 
direct succession but rather the diversification of a complex ecology of programming 
languages. Moreover, there have been and continue to be other frameworks for abstracting 
digital systems. Thus, the point is not to suggest that the object is somehow an inevitable 
and necessary outcome of this process of linguistic abstraction. Rather, this history 
demonstrates how the computational object, as one possible outcome for a process of 
abstraction, offers a number of critical insights into the relationship between objects, 
language, and the real.5 
 
2. Object-Oriented Programming 



The notion that a program can be thought of as a set of objects that consist of a series of 
properties and functions, which ultimately allow them to interact with other objects, 
provides the central metaphor for object-oriented programming. Each of these objects is 
defined by a class, which lays out its basic rules, and provides a method for constructing as 
many objects as needed. If this all seems rather abstract, it is because its entire purpose is, in 
the most general and abstract terms, to describe programming any system. Object-oriented 
programming provides an abstracted means to think about the real work that a program 
does. Many introductory programming books usually begin with a simple example to clarify 
the matter and perhaps one would help here as well. 
 
We can take an example from the manuals for Simula, a system to manage (or simulate) an 
airport ticket counter. We could design our system with a class named “airplane” with a 
fixed number of seats and a function allowing a passenger to be assigned to a seat. We could 
also create a class named “passenger” that could perform various functions and have data 
assigned to it. The class itself does not contain the specific data and instead functions as a 
template from which to create objects. Our program then would take these classes, and 
every time it needed a new passenger or airplane, it would create an instance or object that 
would maintain this data as long as needed. This form of programming helps to 
conceptualize complex programs and also to divide the writing of such programs among 
multiple programmers as each programmer can focus on a certain class or set of classes 
once they are defined. 
 

3. Language or Real Language 
In order to appreciate the novelty and importance of the concepts developed under the name 
object-oriented programming, it is critical to understand how programming languages 
function not only as a means of instructing a computer but also a tool for thinking and 
communicating, in short as a language. Rather than being merely a means to instruct 
computers, they are complex languages whose logics and ambiguities continually reshape 
computation. There is a tendency both in general discussions and critical examinations of 
software to separate “language” from code. These arguments most often center on the claim 
that, because computer languages are compiled by a strict set of rules into machine code, 
they are merely a set of instructions for the computer to follow and cannot signify anything 
or provide any ambiguity like a real human language. Thacker (2004, pp. 13–14) presents 
this position succinctly, saying that “code is not necessarily language, and certainly not a 
sign…A code is a series of activated mechanical gears, or a stack of punched cards 
circulating through a tape-reading machine, or a flow of light pulses or bits in a transistor or 
on silicon.” While Evens (2006, p. 89) ultimately makes an argument for creativity and 
desire in the interface between programmer and machine, he simultaneously suggests that 



“computer language is wholly literal. Every line of code derives its meaning precisely from 
the letters or characters that are used to write it down, and it has no meaning beyond those 
letters.” Kittler (1995, p. 147) even insists that “the last historical act of writing may well 
have been the moment when, in the early seventies, Intel engineers laid out some dozen 
square meters of blueprint paper (64 square meters, in the case of the later 8086) in order to 
design the hardware architecture of their first integrated microprocessor.” 
 
Ultimately, this antipathy to seeing programming languages as language and insistence on 
the importance of the computational translation of code into binary, which shows up in 
stronger and weaker forms in a variety of additional authors including Hayles (1999), 
Galloway (2004, 2006), and Golumbia (2009), finds an early expression in Derrida’s 
repeated distinction between writing and “the program.” For instance, 
in Circumfessions (1993, p. 31), Derrida says against an attempt to codify his theoretical 
edifice, “The grammar of his theologic program will not have been able to recognize, name, 
foresee, produce, predict, unpredictable things to survive him.” Here, the program is 
presented as an attempt to refuse the unpredictable that is endemic to writing. It is this belief 
that the program is closed and completely predictable in its translation from computer 
language to binary code that underwrites these repeated claims that computer language is 
wholly literal, a literality that can never be literature, and hence not language. 
 
While computer languages function and develop differently than spoken or traditional 
written languages, they are still creative, metaphoric, and evolving systems of 
communication. Even though an effective program must be interpreted and compiled into 
binary code following a rigorous set of rules, the entire edifice of contemporary high-level 
computer programming languages has been built around making it easier for a programmer 
to implement his or her ideas and communicate that implementation with others who look at 
the code. Nearly, every contemporary programming language has a method for marking 
lines as comments so that a programmer can explain to others (and herself in the future) the 
purpose of parts of the program. Names of key parameters are decided in such a way as to 
make the flow of the program comprehensible, as the compiler is largely agnostic towards 
the selection of these names. Moreover, the challenge of writing complicated programs is 
often dividing the program into smaller subsets and designing a method to make sense of 
these divisions. I recall my high school programming textbook beginning with the statement 
that a good programmer can write code that works, but an excellent programmer can write 
code that another programmer can easily understand. 



 
The entire purpose of high-level languages is to create human-comprehensible abstractions 
that allow more efficient programming by creating ways to describe computation that exist 
as a translation point between human abstractions and hardware. The first version of Simula 
was explicitly seen as both a tool for programming and communication. The language was 
initially conceptualized as a language for writing simulations; as such, it was designed to be 
both a compilable programming language to run simulations and a language to describe the 
real-world systems that were being simulated. The manual for Simula 1, the first version of 
the Simula family of languages, states, “Attempts have been made to make the language 
unifying—pointing out similarities and differences between systems, and directing—forcing 
the research worker to consider all relevant aspects of the systems. Efforts have also been 
made to make Simula descriptions easy to read and print and hence a useful tool for 
communication” (Nygaard and Dahl 1978, p. 249). Thus, even at this relatively early stage 
in the development of high-level programming languages and object-oriented methods, there 
was a deep concern with providing for human communication. 
 
Ultimately, while the compilability of a program and its set of rules for translation into 
binary code constrain the possibilities of computer programs and language, the use of 
programs to communicate between humans and the metaphors and abstractions permitted by 
object-oriented languages produce languages that approximate the complexity and creativity 
of “real languages.” To create effective means for programming requires developing a 
language and system to translate the “real” world into computation and interact with 
already-established modes of computation. To deny that programming languages are 
somehow less real, less creative or have less to tell us about the world than other languages 



proscribes a powerful opportunity to interrogate a whole class of rapidly changing 
languages. 
 

4. The Pre-History of the Object I: Simula 
With these prefatory matters in mind, it is now possible to turn directly to the history of the 
object as a means of thinking and writing programs. The earliest computer programs were 
written in machine code, which operated directly on individual memory locations (each 
block of memory has a unique address that high-level languages hide from the programmer) 
and provided only the operations that the processor supported (e.g., add, multiply, and 
Boolean logic). By the end of the 1940s, computers began including assemblers, which 
would translate assembly code into machine code. Assembly languages provided the major 
advantage of mnemonics or programmer-defined names that could be used to refer to 
commands and memory locations rather than numbers used with machine code 
(Salomon 1993). The mid-1950s saw the development of higher-level languages that began 
to abstract some of the functions being done by the hardware into more human-
understandable concepts. These languages began to manage memory without requiring the 
programmer to deal directly with locations in memory. 
 
These early high-level languages were generally procedural; programs were constructed as a 
sequential set of commands that followed one after the other (and would at certain points 
return to an earlier point in the program or repeat a section or skip sections under certain 
conditions). Structured programming approaches were added to allow programmers to reuse 
parts of programs and minimize convoluted movements through the program creating what 
is known as “spaghetti code.” Out of these attempts, to more coherently structure programs, 
objects began to emerge. One of the earliest languages to begin moving away from 
procedures towards objects was Simula, developed in the 1960s by Ole-Johan Dahl and 
Kristen Nygaard at the Norwegian Computing Center (NCC). 
 
Nygaard began the initial designs for Simula in 1960 upon his arrival at NCC. Simula went 
through a number of revisions and was released as two separate languages. The first 
functioning version, Simula I, was completed by the end of 1964 for a UNIVAC 1107 
computer as part of an agreement between UNIVAC and NCC. Simula I was designed 
primarily as a language for simulating complex systems and processes. The initial design 
framework that Nygaard and Dahl began underwent significant revisions in the early 1960s 
before they produced a functional compiler. The original concept for the language was 
based around a series of stations, each of which would handle a queue of customers. The 
customers were treated as passive data structures; they only contained variables (in the case 
of an airport passport number, seat assignment, whether their ticket was paid, etc.). The 



stations, as active processes, would then interact with the customers’ variables and assign 
the customers to a different station’s queue (or remove them from the program). Apparently, 
this early design was influenced by the desire to simulate an airport departure system, as it 
is consistently used as an example throughout Nygaard and Dahl’s discussion of the 
framework (Nygaard and Dahl 1978; Krogdahl 2003). They attempted to find language to 
describe what exists in the world and at the same translate that language into computation. 
Even in its very early stages, we can see how intimately the development of object-oriented 
programming touched on philosophical and ontological questions. 
 

 
 
As Nygaard and Dahl wrestled with these concepts prior to the implementation of Simula I, 
they began to abstract this dual ontology of a network of active stations and passive 
customers towards a single ontology of processes. Instead of representing the system as 
consisting of separate passive and activate processes, they began to shift towards a system 
of processes that contained both active and passive elements (Holmevik 1994). In a 1978 
text written by Nygaard and Dahl describing the development of Simula, they explain 
The airport departure system could be considered from a “dual” point of view: It could be 
described by active passengers, grabbing and holding the passive counter clerks, fee 
collectors etc. Then we realized that it was also possible to adopt an “in-between” or 
“balanced” point of view: describing the passengers (customers) as active in moving from 
station to station, passive in their interaction with the service parts of stations. These 
observations seemed to apply to a large number of situations. Finally, in our search for still 
wider classes of systems to be used to test our concepts, we found important examples of 
systems which we felt could not naturally be regarded as “networks” in the sense we had 
used the term…The result of this development was the abandonment of the “network” 
concept and the introduction of processes as the basic, unifying concept (p. 249). 
 



We can witness here a very condensed process of (programming) linguistic abstraction. The 
initial language, based on a certain system, is confronted with different concrete systems 
that force the abstraction to change and account for these new systems. Thus, the dualistic 
system of stations and customers is replaced by a more nimble and robust metaphor of 
processes. Moreover, around the same time that they introduced the notion of processes, the 
language formally differentiated the description of a process from the process itself. Within 
Simula I, a process is declared with the keyword “activity”; thus, a program could be 
thought of as describing “activities,” which then were used to produce individual 
“processes” (Krogdahl 2003). In a sense, the activity declaration could be thought of as a 
platonic idea that describes how a process should be built and function, describing its 
essential characteristics, and then upon being run, the program could produce multiple 
instances of the activities that would have concrete values and states associated with the 
variables described in the declaration (many contemporary OOP languages refer to this 
same distinction as classes and objects—where a class describes how the object functions 
and then the program produces multiple objects as instances of the class). Thus, while 
shifting from an ontological system of computation in which the world consists of two types 
of object to a single type of object, Dahl and Nygaard bifurcated their ontology along 
another line into a separation between concept (or activity in their language) and process. 
These developments were not only a change in metaphors but also produced changes in the 
underlying code of the compiler. At this point, Nygaard and Dahl decided to abandon the 
initial plans of creating Simula as a preprocessor for ALGOL, a language that while not 
particularly well adopted, constituted a major development in the theory of programming 
languages.6 As a result of the abstractions they were writing into Simula, the underlying 
data structure (the way in which information is organized and represented as bits within 
memory) used by ALGOL was not flexible enough for their purposes. So, they created a 
completely new compiler that could handle both ALGOL code and data types along with the 
more flexible data structures that Simula required. Thus, the development of Simula 
proceeded and was constrained along two fronts. The language required an adequate 
underlying system for managing the data structure and the central metaphor of processes 
had to account for systems and objects in the world that were to be described and translated 
into compilable code. The challenge that confronted Dahl and Nygaard was to create a 
language that could translate between these two fronts. 
 
In addition to these concerns, one of the goals of Simula I, as a simulation system, was to 
allow for quasi-parallel processes. Since a simulated system would have multiple processes 
occurring simultaneously, the language required a method whereby a pseudo-system time 
would allow the emulation of multiple processes. For example, in the case of simulating an 
airport, multiple counters would be serving customers simultaneously. Since the machines 



that Simula ran on could only process a single instruction at a time, simulating multiple 
processes required scheduling turns so that the language could approximate simultaneity. 
While this aspect of Simula was not maintained in many successor languages, it has again 
become an issue as many large-scale programs are now run on multiple computer cores that 
can split up tasks and actually compute them simultaneously.7 Still, this movement towards 
multiple processes acting independently while influencing each other in the global 
ecosystem of the program was an important step in moving from a series of commands to a 
set of objects. 
 
While Simula was not unique in developing in this direction, we can observe in this 
movement a moment in a larger divergence between math and programming. Despite the 
initial design plans, they quickly moved away from thinking of the language in terms of 
mathematics, “We no longer regarded a system as described by a ‘general mathematical 
structure’ and instead understood it as a variable collection of interacting processes—each 
process being present in the program execution, the simulation, as an ALGOL stack” 
(Nygaard and Dahl 1978, pp. 249–250). This statement is symptomatic of a much larger 
rupture that has disrupted late twentieth and early twenty-first century science between the 
primacy of computation and mathematics. Within computation, there are those such as 
Nygaard and Dahl, who see programming breaking with mathematics, while there are those 
who stress the mathematical nature of computation.8 Furthermore, there has been a 
considerable amount of work in the semantics of programming languages that while 
recognizing the divergence between programming language and pure mathematics or logic, 
has attempted to create mathematical descriptions of these computational 
systems.9 Likewise, within the physical sciences, some now see a universe that builds 
chaotic processes out of a near-infinite number of simple processes running and interacting 
concurrently rather than deep mathematical structures.10 Math and computation are 
obviously related, but the question that simultaneously unites the two and inscribes their 
difference is whether math explains a fundamentally computational world or the other way 
around. Regardless of which wins out in the end, the important point for our purposes is that 
in this movement away from being exclusively mathematical, computers quickly came to 
contain multitudes. While pure mathematical computation will always be possible for 
computers, increasingly, they have become machines for working on data and computing 
complex systems out of large collections of relatively simple interactions and processes. 
 
With the transition from a dual ontology to a single ontology of processes and the 
movement from mathematics to pseudo-parallel interacting processes, Simula I succeeded in 
the computational ecology of the mid-1960s. Throughout 1965 and 1966, Dahl and Nygaard 
taught and promoted the language. As its use expanded, they realized that its underlying 



architecture could be generalized even further from a simulation language for ALGOL to a 
general programming language (Holmevik 1994, pg. 32). In developing a second version of 
Simula, they were heavily influenced by the work of C.A.R Hoare on record classes and 
subclasses, which he presented at a conference in the summer of 1966 
(Dahl 2004).11 Hoare’s work contributed the notion that one could describe a broader data 
structure and then also describe more specific versions of that data structure. For example, 
one could describe a number of things about “vehicles” and then also define more 
specifically programmatic differences between “cars” and “trucks.” With this and a number 
of lessons from Simula I in mind, they commenced developing what would become Simula 
67. They began designing the new language and presented a paper at a computer language 
conference (IFIP TC2) in Oslo in May of 1967. That same month, they signed a contract 
with Control Data to implement the still-unfinished language. The following month, the 
Simula 67 Common Base Conference was held to oversee the specification for the language. 
Under the auspices of the Simula Standardization Group, which was created out of the 
common base conference, a finalized specification was created and the first compilers were 
released in 1969 (Holmevik 1994). 
 
While the increased involvement of committees and groups speaks to the growing 
complexity and interest in Simula, the most important philosophical shift between the first 
and second versions of Simula was the replacement of processes with objects. Dahl (2004) 
explains the difference by stating: 
 

The most important new concept of Simula 67 is surely the idea of data 
structures with associated operators (and with or without own actions), called 
objects. There is an important difference, except in trivial cases, between: the 
inside view of an object, understood in terms of local variables, possibly 
initialising operations establishing an invariant, and implemented procedures 
operating on the variables maintaining the invariant, and the outside view, as 
presented by the remotely accessible procedures, including some generating 
mechanism, dealing with more “abstract” entities. This difference, as 
indicated by the car example in Simula I, and the associated comments, 
underlies much of our program designs from an early time on, although not 
usually conscious and certainly not explicitly formulated (p. 21). [Italics 
mine] 
 

For Dahl and Nygaard, two main changes differentiate the process from the object. First, a 
distinction is drawn between the inside and the outside of the object. In contemporary terms, 
this is referred to as encapsulation. The inside of the object is protected from other objects 



and the global program, and only functions that are part of the object have access to internal 
elements. For example, in the case of an airport ticketing system, the variable that stores the 
seat number could only be accessible from within a ticket object. A function could be 
created to change the seat number that would guarantee that it could only be set to a valid 
seat and if the change required an upgrade to first class require that the upgrade fee be paid. 
In complex programs, this helps prevent programming mistakes by allowing objects to 
guarantee that their internal states are kept within expected limits and to make sure that two 
parts of a program treat a data structure consistently. Second, with the movement from 
processes for simulation to a general schema of computational objects, simulation and the 
quasi-parallel simultaneity of Simula I become special instances of the general 
scheme.12 With Simula 67, the simulated time of Simula I was no longer included as a 
native element of the language but could be created with a “simulation class” that would 
allow objects to interact in pseudo-parallel.13 
 
Thus, the process-based ontology of Simula I was replaced by an object-oriented ontology 
in Simula 67. With this shift, time drops out as a fundamental ontological component and 
the object is left to manage its own internal affairs. We can see in this how much the work 
of creating programming languages is a process of describing the world and crafting a 
language that can allow the programmer to describe a world of computation. It is a 
developmental process, wherein certain ideas and metaphors for computation have 
succeeded and others have fallen aside. Specifically, in the case of the Simula languages, we 
see a development away from a process-oriented world towards one of objects and explicitly 
towards objects that are defined by their withdrawal from the world. While processes are 
entirely exposed, objects hide some of their functioning in order to allow the programmer to 
separate the work of defining the object’s functioning and the interactions with other 
already encapsulated object. In the few short years between the initial design for Simula and 
Simula 67, the combined necessities of computation, thought, and language completely 
rearrange the planned metaphor for describing the world drawing significantly closer to a 
fully object-oriented mode of programming. 
 
5. The Pre-History of the Object II: Sketchpad 
The other early influence on object-oriented programming, Sketchpad, was designed to 
support computer graphics and became a major precursor to computer-assisted design 
(CAD). Ivan Sutherland developed Sketchpad a few years prior to the first version of 
Simula as part of his doctoral thesis at MIT in 1963 under the supervision of Claude 
Shannon, a pioneer in computation and the founder of modern information theory. 
Sketchpad was revolutionary on a number of fronts; it essentially founded the field of 
computer graphics and was a major influence on the graphical user interfaces that came to 



dominate desktop computing. Sketchpad allowed a user to draw and manipulate lines and 
shapes on a computer using a light pen in much the same way that mice and trackpads are 
used today. Sketchpad was not simply a graphic drawing tool; it was designed  to aid in 
drafting work and attempted to add features to this work by going beyond what was possible 
by hand. The software allowed a user to create master drawings that could then easily be 
reproduced and added as instances to another drawing. Hence, if one were designing a 
circuit, a single master transistor symbol could be drawn and then the actual drawing would 
link to the master; so if a user updated the master drawing, it would automatically update 
each instance. Moreover, the software stored the topology of the drawing; such that if a 
transistor symbol were moved, the software would move the lines connected to it. One can 
see here the basic outlines of an object-based model in the relationship between master 
drawings and instances. Thus, while Sketchpad presented a very different programming 
interface to the user than what is normally thought of as a programming “language,” the 
interaction provided by sketchpad in a sense allows for object-oriented drawing. Each of the 
subdrawings were encapsulated and left to handle their own affairs, while the “programmer” 
or drafter is working on another level of the drawing. 
 
According to Sutherland’s account of the development of Sketchpad, there was a very 
similar process to Nygaard and Dahl’s in which he began with an attempt to create a certain 
model in software that was generalized and abstracted over time. In the earliest stages of 
development, Sutherland worked to implement “strong conditions” that would allow a user 
to carry out common drafting techniques. Sutherland (2003) says of these early designs, “At 
this time a notion of ‘strong conditions’ was used to give geometric nicety the drawing. For 
example, lines could be drawn parallel or perpendicular to existing lines but carried no 
permanent trace of the relationship other than the accident of their position. This early effort 
in effect provided the T-square and triangle capabilities of conventional drafting (pp. 32–
33).” While the initial plan was to essentially create digital versions of drafting tools, 
Sutherland in consultation with his advisor abandoned this plan and instead created a 
generic structure for defining arbitrary constraints (Shannon also convinced him to include 
the capability to draw circles in addition to lines). Sutherland (2003) says of this shift, 
Out of these talks came the conviction that a generic structure would be necessary if the 
system were to be made easy to expand. On June 9, 1962 all this new information came to a 
head and an entirely new system was begun which has grown with relatively little change 
into the final version described here. Had I the work to do again, I could start afresh with 
the sure knowledge that generic structure…would more than recompense the effort involved 
in achieving them (p. 35). 



So, we see here a similar movement towards abstraction; the attempt to emulate a limited set 
of elements, such as a T-square, is expanded, increasing the conceptual complexity of the 
language overall but making it more efficient once the central metaphor is understood. 
Moreover, just like in the case of Simula, Sutherland had to develop a new way to store the 
raw data for his program in order to link the conceptual innovations of Sketchpad with the 
underlying structure of the bits. In order to effectively store the topological relations of a 
drawing, Sutherland invented a ring structure. The ring structure was used to make it easy to 
update a drawing without having to search for all of the connected points. For instance, one 
“ring” may consist of all of the lines terminating in a given point; so if the point is moved, 
the computer simply goes around the ring until it has updated all of the lines. And, each ring 
is linked to other components by a “chicken” element, “The hen pair is contained within a 
block which will be referred to, for example, in a point block, while the chicken pair is 
contained in a block making reference to another, for example, a line block making 
reference to the point” (Sutherland 2003, p. 41). It is perhaps an unfortunate accident of 
history, or a result of the decline of American agriculture, that later languages never used 
this particular terminology of chickens and hens. Regardless, with Sketchpad, as we saw 
with Simula, the language developed simultaneously along two tracks. The desire for a new 
metaphor to conceptualize, in this case, drawing required both the creation of a workable 
generalized metaphor and at the same time the creation of an organizational schema for the 
raw bits. 
 
Still, this organization of the bits was not created ex nihilo but built on previous 
abstractions. The most basic of these abstractions are built in at the level of hardware, as 
computers are designed to operate on “words.” A word is the standard number of bits that 
are treated as an addressable unit by the computer (in contemporary computers, this is most 
often 32 or 64 bits). So, even machine code operates not directly on bits but on collections 
of bits. Building up from words, different data structures organize these words into 
structures that aid in computation. Sutherland developed his ring structure based on n-
component elements, a method of storing complex data types that consisted of multiple 
linked simple data types developed by Douglas Ross. Incidentally, Ross’s work also 
happened to be a major influence on Hoare’s concept of record classes. As we saw above, 
record classes were a major influence on the design of objects in Simula 67 (Blackwell and 
Rodden 2003). 
 
Ross’s n-component elements were part of a more general scheme that he designed for an 
abstract data type that he called a plex. He initially described a plex in 1961 as, “much more 
powerful than list or tree structures (including them as subcases) and appears to be better 
suited for the concise representation of the complex interrelations of elements which 



constitute a ‘problem’” (Ross 1961, p. 147). In comparison with other existing data 
types, plexes, and with them n-component elements, were significantly more abstract and 
could store much more complicated types of data. In the development of this idea, along 
with many of the other central advances of OOP, there can be seen a major shift away from 
thinking of computation as either mathematics or simply as a series of processes. Instead, 
even with Ross’ plexes, computation began to be presented as an ecology 
of complex interacting elements.14 
 
With the development of Sketchpad and the advent of computer graphics, the creation of 
separable elements as a means for understanding computation provided a distinct advantage 
as elements could be manipulated and designed and then ignored in order to work on 
another level of abstraction. This has served to be an effective way to work with computer 
graphics, as each element can be treated on its own and the element can control many of its 
actions internally. For example, in contemporary operating systems, windows, icons, and 
other elements can be programmed once and then multiple instances can be created. With 
Simula, creating a set of processes, and then later objects, served as a means to describe a 
simulation of the world. With Sketchpad, we see the description and creation of a visual 
world internal to the computer, “At the outset of the research no one had ever drawn 
engineering drawings directly on a computer display with nearly the facility now possible, 
and consequently no one knew what it would be like” (Sutherland 2003, p. 28). With the 
rise of computers as graphical systems with complex interactions, computers now contain 
worlds onto themselves. The object-like systems that Sutherland created, along with the data 
structures that allowed for these systems, played a key role in developing the conditions for 
the construction of these worlds and their presentation to the general population. 
 
6. The Beginning of Object Orientation: Smalltalk 
Thus, the digital object ossifies out of two histories, one virtual and another visual. Within 
computation, the object arises out of a desire to create a model of the world within the 
computer but at the same time out of an attempt to create a whole new visual world native to 
the computer. In both attempts at creating a world, the object, or the drawing in the case of 
Sketchpad, appears as a necessity due largely to increasing complexity and a desire by the 
designers of these languages to allow elements to handle their own affairs. One of the key 
organizational benefits of object-oriented programming is the ability to write the functions 
and data structures for objects and then ignore or forget what is going on inside the object 
and only function on the purposefully exposed external aspects of the object. 
 
While Simula 67 contained objects and Sketchpad produced object-like subdrawings with 
topological constraints, Alan Kay saw in objects a whole programming philosophy. It was 



this philosophy that he infused into Smalltalk, a language developed by Kay to be 
completely object-oriented and teach users how to conceptualize programming. The earlier 
languages offered objects or object-like behaviors as a possible method for controlling 
programs, but Smalltalk was designed to consist solely of objects that passed messages 
between themselves. Kay, along with Dan Ingalls and Adele Goldberg who worked on the 
language and its implementation, raised the notion of objects to an overarching concept that 
could encapsulate the entire programming system, “I spent a fair amount of time thinking 
about how objects could be characterized as universal computers without having to have any 
exceptions in the central metaphor” (Kay 1996, p. 258). Smalltalk built explicitly upon the 
developments of Simula and Sketchpad but was oriented towards a new age of personal 
computing. 
 
Millions of potential users meant that the user interface would have to become a learning 
environment along the lines of Montessori and Bruner; and needs for large scope, reduction 
in complexity, and end-user literacy would require that data and control structures be done 
away with in favor of a more biological scheme of protected universal cells interacting only 
through messages that could mimic any desired behavior (Kay 1996, p. 511). 
Much of Kay’s work on Smalltalk was aimed at a project to build a small personal computer 
that children could use to learn how to program. Kay was invested in developing Smalltalk 
as a language that would be conceptually tight and could be used to teach programming. All 
of the versions of Smalltalk prior to its 1980 version, known as Smalltalk-80, were 
not publicly released and kept largely internal to Xerox PARC, where Alan Kay led the 
Learning Research Group. The first version of Smalltalk was developed in 1971, largely as a 
proof of concept. Between 1971 and 1980, a number of versions were developed and 
systems built in the language to make it useable on a machine with bitmap graphic 
capabilities. Smalltalk-80 was ultimately released publicly, and the entire August 1981 issue 
of Byte Magazine was devoted to the language. 
 
Even more than in Sketchpad and Simula, there is a clear philosophical and pedagogical 
interest in presenting a unifying metaphor for computation in Kay’s writing about Smalltalk. 
Here, he attests to his philosophical method for conceptualizing computer programming. 
Philosophically, Smalltalk’s objects have much in common with the monads of Leibniz and 
the notions of 20th century physics and biology. Its way of making objects is quite Platonic 
in that some of them act as idealisations of concepts—Ideas—from which manifestations 
can be created. That the Ideas are themselves manifestations (of the Idea-Idea) and that the 
Idea-Idea is a-kind-of Manifestation-Idea—which is a-kind-of itself, so that the system is 
completely self-describing—would have been appreciated by Plato as an extremely practical 
joke (Kay 1996, pp. 512–513). 



In this conception of Smalltalk and object-oriented programming, the dual ontologies that 
were present in both Sketchpad and Simula are flattened to a single ontology, such that even 
classes are instances of the idea of classes (Smalltalk-80 introduced a second ontological 
notion, metaclasses, but Kay was less involved at that point in the project and believes they 
were unnecessary—in these movements, there is not a single evolutionary tendency and the 
ontological systems proposed are unstable and shifting; Kay 1996). Even platonic ideas 
became idea-objects. Robson (1981, p. 86) puts this even more succinctly, when describing 
object-oriented programming in the Smalltalk issue of Byte, stating, “In a system that is 
uniformly object-oriented, a class is an object itself.” The class itself becomes merely a 
specific type of object. 
 
Kay also pushed human language further into the computer by advocating for late binding of 
variables. Late binding simply means that variables and methods are not directly mapped in 
the compiled program and instead names are used to reference variables and methods; such 
that they can be mapped at a later time. The idea of late binding had existed in previous 
languages such as LISP, but Kay raised it to a principle of OOP. In a discussion of the 
meaning of OOP he says, “OOP to me means only messaging, local retention, and 
protection and hiding of state-process, and extreme late-binding of all things” (Kay and 
Ram 2003). While in many instances late binding slows down the execution of a program, 
because methods have to be looked up at run-time, it simplifies the process of keeping track 
of and modifying how a program runs. Moreover, such a design pushes language even 
further into the operation of the program by maintaining variable names in the compiled 
code. 
 
Smalltalk also advanced this metaphor of computation as objects along another related track 
that turned computation into a self-referential system of interacting computers. Kay (1996) 
describes this understanding of objects in relation to computers: 
 

Smalltalk is a recursion on the notion of computer itself. Instead of dividing 
“computer stuff” into things each less strong than the whole—like data 
structures, procedures, and functions which are the usual paraphernalia of 
programming languages—each Smalltalk object is a recursion on the entire 
possibilities of the computer. Thus its semantics are a bit like having 
thousands and thousands of computer all hooked together by a very fast 
network. Questions of concrete representation can thus be postponed almost 
indefinitely because we are mainly concerned that the computers behave 
appropriately, and are interested in particular strategies only if the results are 
off or come back too slowly. (p. 513) 



Thus, even more than simply reducing computation to a series of objects, computation by 
way of objects became completely synonymous with objects. Each computer became an 
object and each object a simulated computer. Kay ultimately attempted to close his own 
ontological circle and find object-computers recursively defining each other and infinitively 
deferring any concrete representation. It is striking how much this vision anticipated the 
current world of networked computers with large cloud-based tasks spread across multiple 
individual machines. 
 
In order to advance this flat and recursive ontology of computation, objects required a 
method of interaction. In Kay’s metaphor for computation, there could be no transcendental 
system that could handle the interactions between objects, and so, messaging became 
important to allow objects to communicate independently. Messages were central to the 
coherence of the object metaphor of computation, “Smalltalk’s design—and existence—is 
due to the insight that everything we can describe can be represented by the recursive 
composition of a single kind of behavioral building block that hides its combination of state 
and process inside itself and can be dealt with only through the exchange of messages” 
(Kay 1996, p. 512). This insight is central to object orientation; in order to reduce the world 
to a single building block, which handles its own affairs, there must be a means of 
communication between the objects.15 For objects to be possible units of computation, they 
must have recourse to messages. Messages and objects ossify out of computation-as-
procedure simultaneously. There is no object before the relation between them; otherwise, 
one is left with a null object that refuses the very possibility of computation. While Kay 
adopted the term “object-oriented programming” in the early 1970s to describe this 
philosophy of programming, it very well could be called message-oriented programming.16 
 
7. Towards a Theory of Objects 
Within the object-oriented paradigm of programming, objects were invented for the purpose 
and benefit of abstracting the real. The computational real is not made of objects or even of 
“numbers”; rather, the real is comprised of bits. But even the bits are abstractions born of 
language, underneath them there is merely a difference of voltage, levels of light intensity, 
or a direction of magnetization. The digital itself is a way to engage analog electrical change 
over the time of the signal or the space of memory as an object that can be assumed to be 
stable. From pure electric difference moving through the material stratum of the computer, 
we forge bits; these bits give rise to numbers and commands. Out of these basic 
abstractions, more complex abstractions are created through language and metaphor. The 
computer comes to operate on processes, functions, classes, and objects as a result of its 
collision with human language. None of these objects, e.g., bits, functions, classes, and even 
the object that Smalltalk invented, exist as objects outside of language. This is not to say 



that they are only linguistic or that they do not really exist. The digital real exists and exerts 
itself within its ossification into object form, but in the real, there are no objects, merely a 
vast field of electric difference. Likewise, it is not to say that everything is language or that 
everything is material. A discourse that does not affect the electronic system within the 
machine can never flip a bit. Conversely, for electric difference to mean anything, it must be 
delimited as an object, process, or other data type within language. Programming is a 
process and system of representing and simultaneously hiding the real in language. 
 
In this movement from the computational real to the object, nothing is hidden a priori. What 
we could term “objectification,” the creation of an object in language out of a series of 
processes, withdraws and hides part of the object’s operation from the programmer. We can 
have access to everything about the object, yet something must be hidden in order to 
proceed in the task of abstracting and programming anything but the most trivial or 
exclusively mathematical system. The status of any given bit can be queried and revealed, 
but in order to interact with a computer meaningfully and productively requires obfuscating 
the overwhelming scale and complexity of the individual bits. One of OOP’s main 
advantages is the ability to encapsulate objects and leave their internal affairs to the objects. 
Apropos Smalltalk, the object is created through a double movement. On the one hand, the 
object is encapsulated and made to withdraw; simultaneously, interfaces are created such 
that the objects can exchange messages with other objects. Even in these attempts to flatten 
the ontology of computation to a single, recursively defined building block, new modes of 
existence keep arising, classes, messages, metaclasses, etc. At least in terms of computing, 
objects are neither the “natural” building block of computation nor the inevitable outcome 
of a process of abstraction or increasing complexity. Rather, they are a negotiated and 
unstable means of counting the computational real, modeling and creating worlds inside and 
outside the computer and interfacing computation with human language. Moreover, even if 
one were to take an evolutionary position on the development of programming languages, it 
is not clear that the existence of a specific set of objects is the end result of such an 
evolution. Within an object-oriented programming framework, there is not a “correct” set of 
objects that one must work with. Furthermore, there is not even a correct way to define what 
an object is; different ontologies emerge from the logic and metaphors of different 
languages. The whole task of designing a program involves determining how best to delimit 
the set of objects and their interfaces that will constitute the program. Thus, both the 
creators of programming languages and programmers themselves must do ontological work, 
in so much as a given program must be broken into its ontological components (whether 
they are objects, classes, procedures, etc.). 
 



Alt (2011, p.292), in suggesting that object-oriented programming was the major advance 
that turned computers from calculating machines into media, argues, “Encapsulation 
requires the programmer to conceive the space of the program as embodied, three-
dimensional space containing multiple individual subjectivities.” It is precisely the process 
of this creation of these subjectivities that handle their own affairs that is of critical 
importance in any theory of the object. The creation and encapsulation of these objects 
place demands on users, programmers, and other subjects from the moment of their creation 
and delimitation. In sum, a philosophy of objects that would learn from the philosophy and 
history of OOP must take up as one of its central tasks a serious consideration of the way in 
which objects are demarcated in language and the implications any set of objects, or 
ontology, has on the global ecology of objects. 
 
Here, we find ourselves at odds with philosophers who insist on the concrete existence of 
objects. The most radical interpretation of the history of object-oriented programming leads 
us to the proposition that even if we accept the reality of bits, or electrical difference, 
objects, as unique bundles of substance, exist only through language (or something 
analogous to language—as the object-oriented ontologists’ attempt to push philosophy 
beyond the human is commendable). This is not to say that they are not real, but that their 
delimitation as unique things exists in language even though the substance of objects is 
material. Thus, this is not at all an idealist or anti-realist position. There are bits and electric 
current that are undeniably real, but their organization into objects is a function of language. 
In this, we arrive at a similar position to the one Smith (1996) presents in his text, On the 
Origin of Objects, in which he draws from Computer Science to claim that objects must be 
“registered.” Likewise, we are very close to Barad’s agential realism (2007), inspired by her 
research in quantum mechanics, in which a scientific or social apparatus makes an agential 
cut that co-creates both subject and object. 
 
One could argue that perhaps what we see in this history is not the creation of objects as an 
ontological element but rather the development of a language to such a level of complexity 
that it is finally able to describe objects that already exist in the world outside of language. 
Against this objection, it must be noted that what we witness in this history, what drives it 
forward, is the difficulty of relating language to world, whether it is a simulated world or a 
new world of computer graphics. Moreover, the examples presented here and in the 
textbooks and manuals for object-oriented programming demonstrate the often-difficult art 
of defining the objects that will constitute a given system. Not only are individual objects 
unstable but even the very concept of what an “object” is, how they are to function, and 
their relation to the rest of the system are unstable and negotiated through the construction 
of these various languages.17 With object-oriented programming, we are confronted with a 



whole series of emergent ontologies rather than a single notion of objects that is merely to 
be filled in. 
 
The difficulties of developing and using these languages to describe a problem speak to the 
non-predetermined boundaries of the computational real. In fact, one of the major 
programming problems that can compromise computer systems’ security is known as a 
buffer overflow. Buffer overflows happen when the program expects a variable to be 
smaller than a certain size, but a larger number or string is inserted into the variable. The 
program keeps writing the entire data, overflowing the intended variable and depositing bits 
into other variables, potentially causing programs to crash. Because programs store data and 
commands in the same place, buffer overflows can be used maliciously to take over a 
machine by inserting new commands into the memory locations that will be executed. Thus, 
even the primitive data types of computation are subject to overflowing their bounds since 
the boundaries are a convention of language and not inscribed directly into the 
computational real. Even these basic objects of computation leak and overflow. It is only 
through mechanisms within programming languages themselves that these boundaries can 
be defined and secured. Language must secure its own boundaries. 
 
8. Conclusion: Object Orientations and Their Discontents 
We arrive then at a notion of object orientation that is markedly different from that 
advocated by object-oriented ontologists. While there are any number of flavors of new 
realisms and materialisms, the history of OOP seems to have the most to say about those 
who identify their philosophy with a realism founded on the solidity of objects, like 
Harman. For Harman, the founder of object-oriented ontology, the world is made up of 
objects and the task of an effective philosophy is to speculate about the implications of their 
interactions with and without human intervention. In an argument based upon his reading of 
Heidegger, he claims that objects have depth and are withdrawn from each other preventing 
anyone or anything from accessing their totality. Harman (2011, p. 22) is explicit about his 
object orientation and the existence of objects stating, “the ‘object-oriented’ part of the 
phrase is enough to distinguish it from the other variants of speculative realism. By 
‘objects’ I mean unified entities with specific qualities that are autonomous from us and 
from each other.” Likewise, while Meillassoux (2008) does not identify himself as an 
object-oriented philosopher, his entire argument in After Finitude consists of a thought 
experiment founded on the reality of a bounded and finite “ancestral” object. While there 
are a number of debates internal to speculative realism and its offshoots, which are too 
numerous and detailed to recount here, this fidelity to the notion of objects in Harman and 
other’s thought is squarely at odds with the underlying philosophy and task of object-
oriented programming. 



From those dedicated to object-oriented philosophy, little has been said about object-
oriented programming and the philosophical claims of its creators. One of the only 
connections between these two philosophies is an article critical of both written by 
Galloway (2013). Galloway claims that object-oriented philosophy (and with it a number of 
philosophies built on mathematical foundations, such as Badiou and Mellasioux’s work) is 
politically implicated in its structural complicity with object-oriented programming, which 
he sees as the central technology underwriting global capitalism. Galloway correctly points 
out how apolitical many of the object-oriented philosophers tend to be in their attempts to 
separate ontology from politics. Moreover, even when they make political claims, they tend 
to amount to little more than saying that we will be able to somehow develop a politics 
addressing our debt to our surroundings if we treat objects seriously. Beyond expanding the 
social to include objects, they offer little in terms of how to operate in this society of objects 
or how one would develop a political or ethical system out of it. Despite Galloway’s 
recognition of this anti-political tendency, it seems clear in the light of the history of object-
oriented programming that there is in fact a large gulf between object-oriented programming 
and object-oriented philosophy. 
 
To take OOP seriously as a philosophical and ontological endeavor requires a very different 
form of philosophy than the present object-oriented ontology. If we understand objects to be 
an abstraction of the real that ease our ability to understand and live within its complexity, 
all the while obfuscating the underlying processes, it becomes possible to envision a form of 
object-oriented philosophy that would seek not to understand what objects exist but how and 
to what ends the real could be described as objects, processes, or other ontological 
categories. Instead of accepting as given the boundaries between objects, an object-oriented 
philosophy that follows the lessons of OOP must explore both our popular understanding of 
objects and new possible segmentations of the real. While such a project could take a 
number of turns, perhaps the Marxist critique of objectification and the solidification of 
social relations into commodities could provide an inspired starting point for a philosophy 
that would explicitly call out the need to be aware of the political nature and social 
implications of any ontological system and its assumptions about the solidity of objects and 
attributes. Against the solidity of objects gaining popularity in certain quarters, a philosophy 
informed by the genealogy of the digital object must confront and understand the multitude 
of ways in which the real can be divided, described, and understood. 
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Endnotes 
 
1 Abadi and Cardelli (1996) outline a taxonomy that attempts to account for the variety of object-oriented 

languages while suggesting a unifying system for explaining them. The complexity of this taxonomy and the 

changes that “objects” have undergone over the course of their history suggest that the very concept of an object is 

not fixed and must be worked out in language. 
2 Krogdahl (2003) provides an extensive history of Simula. Priestley (2011) traces the history of both Simula and 

Smalltalk. Manovich (2013) explores the history of Kay’s work on Smalltalk with a focus on the development of 



 
the Dynabook. Kay (1996) provides one of the most comprehensive overviews of the history of Smalltalk. It 

appears that little has been written about the history of Sketchpad. While informative, what has been written has 

largely traced the history of computer graphics, such as Yares (2013). Additional histories, many of the most 

instructive for present purposes written by those involved in designing these languages, are cited below. 
3 Smalltalk is especially fruitful as an object of study in this regard, as Kay and his collaborators strove to 

maintain a philosophical coherence to their language that reflected a complete theory of how computing could be 

understood. Priestley (2011) notes that many later object-oriented programming languages, such as C++, 

abandoned the rigorousness of Kay’s work in order to include elements of earlier styles of programming. 
4 In addition to the below discussion of the negotiations and changes surrounding the development of Simula, 

Sketchpad, and Smalltalk, see for example the changes made to the Java Memory Model in Goetz (2004). 
5 I use the term “real” to describe the material aspects of computation following Kittler’s Lacanian-influenced 

media-historic materialism (Kittler 1999). 
6 Priestley (2011, 225) suggests that while Algol was not very successful in practical terms, “what changed the 

face of programming was not simply the Algol 60 language but rather a coherent and comprehensive research 

program within which the Algol 60 report had the status of a paradigmatic achievement, in the sense defined by the 

historian of science Thomas Kuhn.” 
7 See, for example, Dean and Ghemawat (2008). 
8 Priestley (2011) argues that Algol was exemplary in attempting to unify a logical and mathematical structure of 

programming that Smalltalk ultimately broke with. Moreover, there are still major developments in computer 

science and programming that stress the mathematical nature of programming, for instance, Milner’s (1999) π-

calculus or Abadi and Cardelli’s description of an “object-calculus” (1995). Likewise, the growing importance of 

encryption for computing has relied heavily upon and even pushed the development of number theory. While all of 

these suggest an intimate relation between programming and mathematics, the development of these languages and 

the purposeful abandonment of the language of mathematics in Simula and also later in Smalltalk (Priestley, 2011) 

point to at the very least a conception of programming that moves away from mathematics, even if it could 

potentially be recuperated. 
9 The mathematical study of the semantics of programming languages functions as a possible “third way” between 

mathematical and computation practices by attempting to mathematically define the emergent structures of 

computation based on various programming languages. Moreover, the semantic descriptions of programming 

languages have then been used to attempt to design future languages. In addition to Milner and Abadi and 

Cardelli’s work (fn. 8), see White (2004). 
10 Stephen Wolfram is one of the most vocal proponents of this notion of a computational rather than a 

mathematical universe. For instance, see Wolfram (2002). 
11 Hoare’s presentation at the NATO Vilard-de-Lans Summer School, where Dahl and Nygaard also presented 

their work on Simula I is available: C.A.R. Hoare, “Record Handling,” 

http://archive.computerhistory.org/resources/text/knuth_don_x4100/PDF_index/k-9-pdf/k-9-u2293-Record-

Handling-Hoare.pdf 



 
12 While many of the ideas developed in Simula were aimed at concurrent processing, they were likely abandoned 

in part because of the difficulty of constructing systems where objects can potentially end up dead-locked, as in the 

dining philosopher’s problem, waiting for other objects who are waiting on them. Despite the movement away 

from concurrency and simulation in many object-oriented programming languages, there is a continued interest in 

the development of concurrent object-oriented programming languages. For a description of some approaches and 

issues related to concurrency in OOP, see Kafura and Lavender (1993). 
13 Dahl (2004) spells out an example of how this could be implemented. 
14 Ross (1961) even suggests that one can use the control point in a program’s execution as a way of storing 

information as there are certain parts of the program that can only be reached if certain conditions are true. Thus, 

in a way, the temporal execution of the program becomes spatialized into a geography of information. 
15 As Priestley (2011) argues, this decision to rely on messages further moved computation away from 

mathematics as the interpretation of a given message was left up to the object that received it. For example, a 

number could interpret “+” as mathematical addition, while a string could interpret it as concatenation (1 + 2 would 

return 3, while “a” + “b” would return “ab”). 
16 Kay discusses this decision in Kay and Ram (2003). 
17 For example, a major element of many object-oriented programming languages is the notion of inheritance, 

which allows a programmer to specify modified versions of a class. For example, one could define a class for 

“animal” of which a “cat” would be a subclass, but it would inherit certain properties from the vehicle. Hoare 

suggested such a model as part of his record classes (see fn. 10), and Simula 67 contained “prefix classes,” which 

functioned roughly in this manner. While inheritance can greatly ease the amount of work that goes into creating 

programs, it risks breaking encapsulation (see Bloch 2001, item 14, for a technical explanation of this 

relationship), in so much as a class, and the objects created from it now rely on code that exists elsewhere. In short, 

external taxonomies in language (in so much as inheritance creates a taxonomy of classes and subclasses) 

ultimately reach inside and affect the internal functioning of objects. Thus, through the very demands of writing 

and language, these objects are pulled outside of themselves, and we see the threat to autonomy and solidity that 

both define and besiege objects. 
 


